

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE Network
Applications for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D2.4: 5G-EPICENTRE service placement

Delivery date: October 2023

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Network Appli-

cations for public proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

Ref. Ares(2023)7430648 - 31/10/2023

https://www.5gepicentre.eu/

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D2.4: 5G EPICENTRE service placement

Work Package WP2: Cloud-native 5G NFV

Task(s) T2.3: VNF chain placement, re-routing and re-mapping

Type Report

Dissemination Level Public

Due Date M34, October 31, 2023

Submission Date M34, October 31, 2023

Document Lead Fatemeh Tabatabaei (CTTC)

Contributors Josep Mangues-Bafalluy (CTTC)

Manuel Requena (CTTC)

Hamzeh Khalili (CTTC)

Apostolos Siokis (IQU)

Almudena Díaz Zayas (UMA)

Jorge Márquez Ortega (UMA)

Internal Review Apostolos Siokis (IQU)

Luis Cordeiro (ONE)

Carlos Marques (ALB)

Jorge Carapinha (ALB)

Ankur Gupta (HHI)

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for
any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-
tium parties, and may not be reproduced or copied without permission. The commercial use of any information
contained in this document may require a license from the proprietor of that information.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 11/07/2023 Initial deliverable structure Fatemeh Tabatabaei (CTTC)

V0.5 28/08/2023 40% of the content

Apostolos Siokis (IQU)

Hamzeh Khalili (CTTC)

Manuel Requena (CTTC)

Almudena Díaz Zayas (UMA)

Jorge Márquez Ortega (UMA)

V0.8 19/10/2023 100% of content
Josep Mangues-Bafalluy (CTTC)

Fatemeh Tabatabaei (CTTC)

V0.9 25/10/2023 Internal Review Version
Josep Mangues-Bafalluy (CTTC)

Fatemeh Tabatabaei (CTTC)

V1.0 27/10/2023 1st version with suggested revisions

Apostolos Siokis (IQU)

Luis Cordeiro (ONE)

Carlos Marques (ALB)

Jorge Carapinha (ALB)

Ankur Gupta (HHI)

V1.2 29/10/2023
Revisions to document after 1st internal re-

view

Josep Mangues-Bafalluy (CTTC)

Fatemeh Tabatabaei (CTTC)

V1.5 31/10/2023 Final Version for Quality & Security Review Konstantinos Apostolakis (FORTH)

V2.0 31/10/2023 Final version for submission Fatemeh Tabatabaei (CTTC)

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der an-
gewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de
Catalunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

3GPP 3rd Generation Partnership Project

5G PPP 5G Public Private Partnership

API Application Programming Interface

CDF Cumulative Distribution Function

CNF Cloud-Native Network Function

CPU Central Processing Unit

CRD Custom Resource Definition

E2E End-to-End

GA Grant Agreement

(M)ILP (Mixed) Integer Linear Programming

JSON JavaScript Object Notation

K8s Kubernetes

KPI Key Performance Indicator

LCM Lifecycle Management

LB Load Balancer

MQTT Message Queuing Telemetry Transport

NFV(O) Network Functions Virtualization (Orchestrator)

OS Operating System

PPDR Public Protection and Disaster Relief

QoE Quality of Experience

QoS Quality of Service

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

RTT Round-Trip Time

SDN Software Define Networking

SF Service function

SFC Service Function Chaining

SoA service-oriented architecture

TI Testbed Instance

VNE Virtual Network Embedding

VNF Virtual Network Function

VPN Virtual Private Network

VSF Virtualized Service Function

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

Executive summary

This deliverable constitutes the final report on the 5G-EPICENTRE service placement module. This module is part
of the federation layer and is in charge of deciding the best cluster to deploy the service, where “best” is defined
as the one contributing better to make an efficient (load balanced) use of computing resources, whilst fulfilling
the stringent service requirements in terms of latency.

In this direction, this document first introduces the context of the problem, formulates it, and evaluates it under
a variety of conditions, including varying loads and cluster capacities, number of clusters, service requirements,
or other parameters, more related with the algorithm design itself, such as number of services per service batch
(i.e., number of services being deployed simultaneously in the emergency scenario).

This deliverable also presents the architecture built experimentally to integrate service placement itself, as well
as the required auxiliary modules (e.g., round-trip time measurement, data gathering).

The main contributions of this document are:

 To present a comprehensive solution to address the critical challenges associated with service manage-
ment and resource allocation in emergency scenarios. This was achieved through the design and devel-
opment of a built-in module, specifically for managing services based on their requirements in emer-
gency situations. Our module ensures that services are deployed optimally, even under the stringent
emergency conditions.

 To introduce a service placement algorithm, designed to propagate services across edge data centres,
whilst ensuring optimal utilization of resources. This algorithm takes into consideration the dynamic and
resource-constrained nature of edge computing environments, providing an approach to service deploy-
ment that maximizes the performance and availability of crucial services.

 To evaluate the proposed service placement algorithm based on integer linear programming, comparing
it to a load balancing solution. It is shown that the former outperforms the latter in terms of resource
usage efficiency in constrained edge computing clusters, since it allows handling higher CPU workloads
and a higher number of services.

 To develop an innovative plugin that seamlessly integrates with the Karmada system, demonstrating the
versatility of our approach. This plugin not only enhances the capabilities of the Karmada system, but
also provides a framework that can be extended to integrate other modules and systems as needed.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

Table of Contents

List of Figures ... 9
List of Tables .. 10
1 Introduction ... 11

1.1 Mapping of project’s outputs ... 11
2 Service placement ... 13

2.1 State-of-the-art on service placement ... 14
2.2 Mathematical model .. 15
2.3 Evaluation results ... 16

2.3.1 Analysis of not allocated CPU workload .. 18
2.3.2 Analysis of not allocated services .. 20
2.3.3 Analysis of load distribution in clusters: maximum cluster load ... 20
2.3.4 Analysis of load distribution in clusters: per-cluster load ... 22

3 Experimental setup ... 25
3.1 Architecture .. 25

3.1.1 Experiment Coordinator deployment ... 26
3.1.2 Metric measurement ... 27
3.1.3 Karmada and scheduler ... 27

4 Conclusions .. 32
References ... 33

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

List of Figures

Figure 1: Comparison of ILP vs. LB: Average not allocated CPU workload (over all repetitions of a given service
load). .. 19

Figure 2: Comparison of ILP vs. LB: Not allocated CPU workload normalized to the total CPU workload requested
by all services of a given repetition. One value per repetition over all loads evaluated. 19

Figure 3: Comparison of ILP vs. LB: Average not allocated services (over all repetitions of a given service load).
 ... 20

Figure 4: Comparison of ILP vs. LB: Not allocated services normalized to the number services of requested in each
repetition. One value per repetition over all loads evaluated. ... 21

Figure 5: Comparison of ILP vs. LB: Maximum cluster load normalized to cluster capacity. One value per repetition
over all loads evaluated, i.e., in each repetition, the point represents the normalized load of the cluster with
highest load among all clusters. .. 21

Figure 6: Comparison of ILP vs. LB: Cluster load of each cluster normalized to cluster capacity. One value per
repetition over all loads evaluated, i.e., in each repetition, the point represents the normalized load of each
cluster at the end of each repetition. There is one series of values for each of the four clusters for each algorithm
evaluated. .. 22

Figure 7: Comparison of ILP vs. LB: Cumulative distribution function of each cluster load, normalized to cluster
capacity. There is one series of values for each of the four clusters for each algorithm evaluated..................... 23

Figure 8: Comparison of ILP vs. LB: Average cluster load normalized to cluster capacity over all repetitions of a
given load. There is one series of values for each of the four clusters for each algorithm evaluated. 23

Figure 9: Comparison of ILP vs. LB: Standard deviation of cluster load, normalized to cluster capacity over all
repetitions of a given load. There is one series of values for each of the four clusters for each algorithm evaluated.
 ... 24

Figure 10: Cross Testbed Federation for 5G EPICENTRE. .. 25

Figure 11: General architecture. This Figure depicts the main components that are connected to the scheduler,
to perform the service placement. .. 26

Figure 12: Example of tracking RTT which will be formatted into a JSON message and sent to the RabbitMQ server.
 ... 28

Figure 13: An example of implementation of cluster resource plugin in Karmada scheduler 30

Figure 14: Plugin registration .. 30

Figure 15: a) Represents the process of updating the scheduler image to include a new plugin; and b) confirms
that the container has been pulled from the repository, and is running successfully in the pod. 31

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Task Description ... 11

Table 2: Scenario parameters .. 16

Table 3: Loads generated .. 17

Table 4: Evaluated metrics .. 18

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

1 Introduction

The 5G-EPICENTRE architecture consists of four main layers, namely front-end, back-end, federation, and infra-
structure (refer to D1.4). The front-end layer is in charge of interacting with the user of the platform. The back-
end layer receives the requests from the user (through the Portal), and manages the lifecycle of the correspond-
ing experiments. Finally, the federation layer function is to aggregate the experimentation resources of the in-
frastructure layer (i.e., the four testbeds of the project), and to expose them in a unified way to the back-end
layer. Therefore, the back-end layer will be able to coordinate the lifecycle management of experiments in any
of the 5G-EPICENTRE testbeds in the same way.

When deploying the services associated to a given experiment, one of the key functionalities is to select their
location in the experimentation infrastructure. The focus of this deliverable is service placement, as a key func-
tionality of the federation layer. When a service deployment request arrives to the federation layer, the service
placement functionality selects the most appropriate cluster of the federation to deploy the service. This is also
of interest in an emergency scenario, in which one could imagine multiple agencies arriving to the emergency
spot, bringing their own resource-constrained computing equipment in the ambulances, firefighter trucks, police
vans, etc. The computing capabilities of all these distributed resources could be aggregated by the federation
layer, to be exposed to all agencies so that they use them as a single big cluster. In this case, service placement
would be in charge of selecting the best service location, i.e., the one that best contributes to making an efficient
use of such constrained resources, while fulfilling the stringent requirements of Public Protection and Disaster
Relief (PPDR) services. In general, this would mean trying to exploit the distant cloud for non-latency-constrained
services (when possible), and do some sort of load balancing of the resources next to the emergency spot.

This document first gives the context of the service placement problem, formulates it along the lines explained
above, and evaluates the proposed algorithm under a variety of conditions, including varying loads, number of
clusters, and service requirements. Finally, the overall service-placement-related architecture that has been de-
ployed in the 5G-EPICENTRE platform is also presented, along with the required auxiliary components, e.g., for
round-trip time (RTT) measurement, or for data gathering.

The following Sections describe the service placement designed and developed in the federation layer to con-
sider the resources available at the network edge and across multiple geographically distributed testbed infra-
structures in the context of 5G-EPICENTRE project. This deliverable is organized as follows: Section 2 deals with
all aspects related with the design and evaluation of service placement. After that, Section 3 focuses on the
practical implications of integrating service placement into the federation layer, and finally, in Section 4, the main
conclusions are presented.

1.1 Mapping of project’s outputs

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments, both within the formal
Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Task Description

5G-EPICENTRE Task Respective Document Chapters Justification

T2.3: VNF chain placement, re-
routing and re-mapping

“[…] This Task will hence deal with
optimal VNF chain placement, ex-
tended to consider the resources
available at the network edge, and

Section 3 – Experimental setup This Section introduces the place-
ment module, which is integrated
into Karmada as an internal com-
ponent. Karmada offers a federa-
tion environment that enables all
testbeds to participate in, making

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

across the multiple geographically
distributed testbed infrastructures,
providing inter-connectivity among
them”.

them potential resources for de-
ploying services. Within this con-
text, we discuss the integration of
the Integer Linear Programming
(ILP) algorithm optimizer, and then
optimizer with cluster resource
plugin.

T2.3: VNF chain placement, re-
routing and re-mapping

“[…] The output of this Task will be
an optimal VNF placement algo-
rithm, that can: i) efficiently of-
fload and redirect traffic between
the Cloud and MEC resources avail-
able;”

Section 2.2 – Mathematical model These Sections present the place-
ment algorithm, which is imple-
mented in the ILP solver. Optimal
pod placement ensures that criti-
cal services are hosted closer to
the edge, reducing latency and en-
hancing responsiveness for end-
users. This, in turn, facilitates the
offloading and redirection of traffic
between resources.

Section 2.3 – Evaluation results

T2.3: VNF chain placement, re-
routing and re-mapping

“[…] ii) offering flexibility in ena-
bling the dynamic re-calculation of
optimal placement to accommo-
date changing network dynamics
and mobility support”.

Section 2.2 – Mathematical model These Sections present the ap-
proach for optimal location, or in-
frastructure, where a service
should run. The scheduler, which is
presented in Section 3.1, connects
to other component of the Kar-
mada system. It actively gathers
real-time cluster conditions to
make decisions that align with re-
quirements and constraints, ensur-
ing efficient resource allocation.

Section 3.1 – Architecture

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

2 Service placement

The advent of 5G has significantly broadened the possibilities in network communication, particularly in manag-
ing and deploying applications across diverse infrastructures. This is precisely what the federation layer in the
5G-EPICENTRE architecture aims at. However, an ongoing challenge lies in efficiently deploying services that de-
mand cutting-edge communication technology to meet stringent requirements for low latency, high-speed, and
high bandwidth. These requirements are crucial for providing effective decision-making support during emer-
gency and disaster scenarios, where multiple agencies deploy their resources in the emergency areas in a PPDR
context [1]. As multiple PPDR agencies rush to deploy their resources in an emergency zone, the service orches-
trator (by offering a holistic view of the available resources, current deployments, and on-ground requirements),
ensures that each agency’s effort is channelled in the right direction. It aids in avoiding duplication of efforts and
ensures that resources, especially the scarce, or critical ones, are utilized where they can have the most signifi-
cant impact. The importance of the federation layer doesn’t end at resource coordination. Another pivotal aspect
in PPDR scenarios is the service placement, which ensures that services are deployed based on service require-
ments with a focus on a proactive approach that ensures effective resource utilization from the outset.

Service placement is the strategic allocation of computational and network resources to ensure that services,
especially those that are latency-sensitive, operate efficiently and effectively. This is particularly vital in PPDR
scenarios where quick decisions are made based on the real-time infrastructure data. A delay, even of a few
milliseconds, in providing service to the end user, can lead to missed opportunities in disaster relief, inefficient
resource allocation, or, at worst, loss of life.

The importance of KPI-based service placement in PPDR scenarios can be understood from following broad per-
spectives:

 Latency constraints: Many PPDR services, such as real-time video feeds from drones, coordination
among first responders, or health telemetry from injured individuals, demand low-latency operations. In
such scenarios, services need to be placed close to where the action is, often on the edge of the network
or on-site, to ensure timely data delivery. These services do not have the luxury of time that many con-
ventional applications might have. In essence, in a disaster relief context, latency isn’t just a technical
metric; it has palpable human implications.

 Resource constraints: Emergency zones are typically characterized by the unpredictability and scarcity
of resources. There might be limited bandwidth due to damaged infrastructure, fewer computational
resources because of power outages, or compromised network integrity due to environmental chal-
lenges. This scarcity underscores the need for smart service placement. Resources need to be utilized
judiciously, ensuring that the most critical services get precedence. Moreover, as different agencies de-
ploy their assets, there is a pressing need for coordination to prevent resource contention and ensure
that every piece of technology deployed works in concert to achieve the common goal of relief and pro-
tection.

In conclusion, the challenges presented by PPDR scenarios evolve. Natural disasters, public emergencies, and
other large-scale events test the limits of our technological frameworks. Central to navigating these challenges
is the science and strategy of service placement. It is a domain where technology meets strategy, and where
efficient algorithms can have real-world humanitarian impacts. As we delve further into this deliverable, we will
explore the nuances, methodologies, and innovations that define Key Performance Indicator (KPI)-based service
placement in PPDR scenarios, highlighting its significance in contemporary disaster relief and public protection
paradigms.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

2.1 State-of-the-art on service placement

The service placement problem refers to the challenge of determining the optimal placement of a virtual network
service within a multi-cluster network infrastructure. In the context of network architecture, VNFs serve as soft-
ware-based network services, often referred to as Cloud-Native Network Functions (CNFs) in experimental set-
tings. These services encompass functionalities like firewalls, load balancers, routers, and deep packet inspec-
tion. There has been a lot of work on virtual network function (VNF) placement during recent years. This is why
we refer to this work as a related source of inspiration, due to: (i) the similarity of the placement problem and
the network and service parameters involved; and (ii) the potential applicability of the same kind of techniques
and ideas.

When a network service is composed of multiple VNFs that need to be traversed in a specific order, it forms a
VNF chain. In general, the placement problem arises when deciding on the appropriate locations within the net-
work, where each VNF of the chain should be deployed to meet certain objectives, or constraints. The require-
ment of services can encompass multiple objectives, such as reducing cost, minimizing the end-to-end latency,
reducing energy consumption, ensuring reliability, etc. However, the trade-offs between these objectives can
lead to several conflicting issues, as placing several functions in the same device can cause scalability problems.

There is a sizeable load of service-oriented architecture (SoA) works published for service placement in a single
domain [2]–[7], and works that tackle both orchestration and lifecycle management (LCM) techniques in an Net-
work Functions Virtualization (NFV)-based multi-domain environment, where multiple operators cooperate, in
order to provide the 5G vertical services and applications [8]-[10]. From the aforementioned works, [7] [8] are
tackling the issue from a cost-aware scope, when it comes to edge-core environments, where pricing policies
and resource availability may greatly vary.

Regarding the single domain SoA works, authors in [2] propose a resource allocation principle for energy-aware
service function chain (SFC) for software define networking (SDN)-based networks. Multiple heuristics are ex-
plained for different optimization problems. The authors consider a single administrative domain with a central-
ized datacentre. The VNF/SFC placement formulation types are provided using integer linear programming (ILP)
formulation in [2] [4] [6]; mixed integer linear programming (MILP) formulation in [3] [7]; and virtual network
embedding (VNE) formulation in [5]. Additionally, [2]–[4] [6] [7] provide heuristic-enabled placement algorithms,
while [4] provides approximation placement algorithms. Considering the placement method, [2] [3] [6] are fo-
cusing on the Quality of Service (QoS), while [4] on the cost. Authors in [5] [7] provide both a cost and QoS–
aware placement method. The work described in [6] is leveraging the leafspine network topology (data centre
network topology that consists of two switching layers, a spine and a leaf), while in terms of NFV Orchestrator
(NFVO) capabilities, [4] provides LCM functionalities. With respect to the architecture, none of the aforemen-
tioned works use decentralized resources (i.e., edge), they use only centralized datacentre environments (i.e.,
core). Finally, with reference to the experimental results, all the aforementioned works provide simulation-based
results, while none of them provides a testbed environment for further verification.

Taking a deeper look into the SoA works, authors in [11] discuss the challenge of latency in 5G network scenarios,
emphasizing its significance in mission-critical environments, where delays are highly sensitive. To address this
issue, the authors propose optimizing the service infrastructure placement to minimize delays in the service
access layer. The placement problem in a Fog Computing/ NFV environment is mathematically considered as a
MILP problem. In [7], the authors addressed challenges in 5G networks, focusing on reducing end-to-end latency
by optimizing SFC placement and resource allocation at the network edge. They propose a comprehensive MILP
model that encompasses user association, SFC placement, and resource allocation in a 5G network infrastruc-
ture. The problem formulated aims to minimize end-to-end latency, service provisioning cost, and the impact of
virtualized service function (VSF) migrations on user experience.

Authors in [9] provide a 5G operating system (OS), in order to lower the complexity of the underlying 5G infra-
structure in a multi-domain environment. Their work is limited, to a high-level architecture of the 5G OS, and the

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

placement, orchestration or LCM techniques are not explained in depth. Finally, authors in [10] provide a multi-
cloud orchestration solution that is completely decentralized. They are using ILP in order to formulate the prob-
lem, while they provide three different optimal-based solutions for the VNF placement problem, focusing on
cost, quality of experience (QoE) and the game theory-based trade-off between the cost and QoE, respectively.
This work does not support migration functionalities, and the simulation-based results are very limited.

2.2 Mathematical model

In this Section, we present a mathematical model, designed to address the service placement problem in 5G
networks. The focus is on the analysis of the efficiency of resource usage at the edge, among those clusters that
fulfil the latency requirements. This is precisely where resources are scarcer, since computing devices hosting
the PPDR services are carried in emergency vehicles. The ubiquity and criticality of 5G networks underscore the
importance of efficiently placing services in the network, thereby ensuring optimal performance and resource
utilization. Our model focuses on the objective of minimizing the maximum load of clusters as resource optimi-
zation, which in the end, results in a more efficient load balancing. The formulation is structured to capture the
nuances of both the service and infrastructure layers, providing a comprehensive approach to the problem at
hand.

Let the set of services be 𝑠 ∈ 𝑆. Each service s has specific characteristics and requirements. The 𝑐𝑝𝑢𝑠 represents
the central processing unit (CPU) demand of service 𝑠. This is the amount of computational resources required
by the service to function optimally. 𝑙𝑠 represents the requested latency for service 𝑠. It is an indication of the
maximum acceptable latency for the service to deliver its function to the end users. Each cluster in the infra-
structure layer can be characterized by 𝑐 ∈ 𝐶, where 𝐶 denotes all clusters in the federation. Each cluster 𝑐 has
its own attributes, as 𝑐𝑝𝑢𝑐 represents the aggregated remaining available CPU capacity of cluster 𝑐. It denotes
the computational resources that are currently free, and can be allocated to services. 𝑙𝑐 represents the latency
from the master node of cluster 𝑐 to user equipment (UE). It provides an understanding of the time taken for a
data packet to travel between the node and the end user. The core objective is to minimize the maximum CPU
utilization across all clusters. To encapsulate the deployment of service 𝑠 on cluster 𝑐, we introduce a binary
decision variable 𝑥𝑠,𝑐 defined as:

{
1 if service 𝑠 is deployed in cluster 𝑐

 0 otherwise

Now let us capture the objective function as:

𝑚𝑖𝑛 (𝑚𝑎𝑥𝑐∈𝐶(∑ 𝑐𝑝𝑢𝑠

𝑠∈𝑆

× 𝑥𝑠,𝑐)) (1)

Now let us present the constraints as follows:

∀ 𝑐 ∈ 𝐶: ∑ 𝑐𝑝𝑢𝑠 × 𝑥𝑠,𝑐 ≤ 𝑐𝑝𝑢𝑐

𝑠∈𝑆

 (2)

Equation (2) shows that the aggregated CPU utilization by the services deployed on a cluster should not exceed
the cluster’s CPU capacity.

∀ 𝑠 ∈ 𝑆: ∑ 𝑥𝑠,𝑐 = 1 (3)

𝑐∈𝐶

Equation (3) highlights that the service can only be deployed non-fractionally.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

∀ 𝑠 ∈ 𝑆, ∀ 𝑐 ∈ 𝐶: 𝑙𝑠 × 𝑥𝑠,𝑐 ≤ 𝑙𝑐 (4)

Equation (4) denotes that the latency of the deployed service should not exceed the latency from the cluster to
the user. In summary, this mathematical model offers a robust framework to address the service placement
problem in 5G networks. By optimizing for both CPU utilization and latency, we ensure that services are placed
in a manner that maximizes the overall efficiency and performance of the network.

2.3 Evaluation results

To validate the proposed optimization model, we conducted extensive simulations comparing our approach with
the Load Balancer (LB) benchmark algorithms. The strategy employed by LBs is the highest CPU available method.
When a new request comes in, the LB allocates it to the server with the highest available CPU capacity at that
moment. In both strategies, if no cluster has the required capacity, the task may either be queued, until a server
becomes available, or a new server might be provisioned, depending on the context.

The simulation environment emulates a typical 5G network, comprising four clusters with a fixed capacity of 16
cores (or 16000 millicores) each. The computing requirements of the PPDR services to be deployed over the
platform exhibit varying CPU demands, ranging from 2000 to 7000 millicores each (See Table 2 for details). The
range of demands of the service can be changed uniformly, which represents a realistic and dynamic network
environment, where service demands fluctuate. The total number of service requests for each repetition is fixed
to 15. For the optimization tasks within our simulations, we have used the IBM ILOG CPLEX ILP solver [12]. The
presented method was validated, by comparing the performance metrics with the benchmark.

Table 2 presents the main parameters of the scenario, and the values considered. Other scenario parameters
were evaluated with similar conclusions obtained. Therefore, the scenario parameters selected below, and the
associated discussion for each of the graphs, is equivalent to the one generated with different variations of these
parameters. In this sense, this scenario is taken as a representative one, to show the typical performance of ILP
compared to LB for the scenarios of interest.

Table 2: Scenario parameters

Name Range of values Explanation

Number of services 15 Number of services that are deployed in a given simulation repeti-
tion. In the case of ILP, they are handled in batches/groups.

Number of loads 5 Number of loads simulated. Selected to vary from situations where
all services easily fit the available resources, to situations in which
the services do not fit, and some cannot be allocated.

Service load range
(millicores)

[2000 .. 7000] Increasing load per service is generated by increasing the rightmost
range in 1000-millicore steps, starting at 3000 and ending at 5000.
The service load for each service is randomly generated in the corre-
sponding range, following a uniform distribution.

Number of clusters 4 Representing the available computing resources in each of the emer-
gency vehicles (e.g., ambulance, firefighter’s vehicle, police van).

Cluster capacities
(millicores)

16000 Based the specifications of some products specifically designed to be
used in emergency scenarios.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

Number of repeti-
tions

10 Different random service loads are generated in each repetition.

Service loads are selected so that they fulfil the following requirements:

1. When randomly generated, they are uniformly distributed in the range selected for a given load. For
instance, for the first load the range is [2000 .. 3000], for the second one it is [2000 .. 4000], etc. (see
Table 3).

2. They allow evaluating the system in a variety of situations that range from unloaded (where no cluster
reaches its maximum capacity, and so, services are easily placed), to fully loaded (where all services
cannot be placed due to lack of resources). It is precisely under these conditions, where the resource
efficiency of the algorithm comes into play.

Table 3: Loads generated

Min Max Average
Total average

(all services)

Per cluster av-

erage work-

load

Normalized

cluster load

2000 3000 2500 37500 9375 0,5859375

2000 4000 3000 45000 11250 0,703125

2000 5000 3500 52500 13125 0,8203125

2000 6000 4000 60000 15000 0,9375

2000 7000 4500 67500 16875 1,0546875

Table 3 presents the characteristics of the loads generated in the simulations for the five loads, including the
range (characterized by min and max) from which service workloads are randomly selected uniformly. The third
column presents the average load around which the services should be selected, as can be seen in the Figures
below, when presenting the average service load in the X axis. The fourth column presents the total load that
would be generated by all services in each repetition (assuming that each service had a workload around the
average one). Finally, the two last columns provide an estimate of the average load that each cluster would have
to absorb, assuming that the total workload could be exactly evenly distributed, which is not the case due to the
services having varying workloads that must be placed as a single unit. Since the cluster capacity is 16000 mil-
licores, the normalized cluster load shows that, for the last loads evaluated, there will be services that for sure
will not fit in the system, since we are requesting more than the total system capacity. When due to the random-
ness of the service workloads generated, the services do not fit in the total system capacity, services are ran-
domly discarded. It is important to notice that the service workloads are generated in each repetition based on
the approach explained before.

The performance of the algorithms is evaluated based on how well the scarce resource of the edge clusters are
used. Other related metrics allowing to characterize how resources are allocated are also obtained. The selected
metrics are presented in Table 4.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

Table 4: Evaluated metrics

Name Explanation

Not allocated
CPU workload

Amount of CPU workload coming from services that did not fit in the system. In some
cases, this is due to the requesting more total workload than the sum of the capacities of
all clusters. In this case, services are randomly discarded for all algorithms evaluated. The
key aspect to highlight is that the difference in this value among algorithms is due to the
efficiency in service allocation.

Not allocated
services

Same as above parameters, but in terms of number of services affected. The not allocated
CPU workload (above metric) may come from many services with small CPU workload
request, or from a few services representing much bigger demands.

Maximum cluster
load

Load of the cluster with the highest load among all those available in the system. This
parameter is interesting because it shows how balanced the workload allocation is among
clusters.

Cluster load Related with the previous metric, a deeper analysis of not just the maximum load, but
the general behaviour in terms of workload allocation for all clusters (e.g., averages, cu-
mulative distribution functions - CDFs) helps in understanding how each algorithm per-
forms.

Variability of
cluster load

Quantifying the variability of load allocation in each cluster measures how evenly bal-
anced the workload distribution is.

2.3.1 Analysis of not allocated CPU workload

Figure 1 presents a comparison of ILP vs. LB in terms of average not allocated CPU workload over all repetitions
of a given service load. There are 5 points per curve, corresponding to the 5 loads evaluated (Table 4). The dif-
ference in performance comes from the better use of resources by the ILP algorithm, which, for all repetitions is
capable of making all services fit in the resources, as long as the total CPU workload demand is below the total
capacity of the system (i.e., the sum of all cluster capacities). If in one repetition, the total CPU workload re-
quested (i.e., the sum of all workloads of all services of that repetition) is above system capacity, services are
randomly removed from the service request queue for both ILP and LB (i.e., exactly the same service requests
are removed in both cases). Therefore, ILP shows a much better performance, precisely when it is more needed,
that is, when operating close to system capacity. This is particularly relevant in a system with scarce edge re-
sources, such as that of an emergency scenario.

To further assess the observed behaviour and more specific cases, Figure 2 presents the not allocated CPU work-
loads for all the repetitions of the simulations. The X-axis represents the average service workload for all the
service requests of a given repetition (i.e., the average over the 15 services being deployed in that repetition). In
this case, given the randomly generated CPU workload requests of each service, the points are scattered through
all the ranges of load values. The same trend observed in the previous Figure is also observed here, since, when
comparing ILP vs. LB for a specific X-axis value, ILP is always below LB, hence ILP always allows allocating more
CPU workload, no matter the combination of random service requests. Notice that for those points, where the
light grey points are not represented, it is because they overlap with LB. In this case, this happens in the leftmost
part of the graph, for which the not allocated CPU workload is 0, due to the system capacity being much higher
than the total demand.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

Figure 1: Comparison of ILP vs. LB: Average not allocated CPU workload (over all repetitions of a given service load).

Figure 2: Comparison of ILP vs. LB: Not allocated CPU workload normalized to the total CPU workload requested by all
services of a given repetition. One value per repetition over all loads evaluated.

Another characteristic that can be observed, and that will be further analysed in the Sections below, is that the
dispersion of points in LB is broader. This is a consequence of a not-so-optimal use of resources in the clusters,
which generate losses of new services arriving with big CPU workloads, that do not fit in any cluster, because the
previously deployed services were not packed as evenly as in ILP. In the following subsections, we observe and
discuss in more detail this characteristic.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

2.3.2 Analysis of not allocated services

Figure 3 presents the same analysis as above, but this time focusing on the average number of services lost due
to not fitting the system. As mentioned above, this only happens in ILP because the total requested workload is
above system capacity. On the other hand, it is common to lose services in LB, even when the total workload is
well below the system capacity, due to the way LB takes placement decisions, which focuses on instantaneous
system conditions, as opposed to a more global approach for all services, as done by ILP. The Y-axis represents
the average over all repetitions of a given load.

Figure 3: Comparison of ILP vs. LB: Average not allocated services (over all repetitions of a given service load).

When analysing all repetitions (Figure 4), despite the fact that the not allocated services is a natural number, and
so the output presents discrete values, similar conclusions as above can be drawn, i.e., for a fixed X-axis value,
ILP always loses the same (if 0 services are lost in unloaded systems), or a lower number of services (when close
to system capacity) than LB.

2.3.3 Analysis of load distribution in clusters: maximum cluster load

Figure 5 represents the load of the cluster (normalized to cluster capacity), that has maximum load among all
clusters for a given repetition. That is, at the end of the repetition, when all services are deployed (or when they
are not deployed, because they do not fit in the system), we examine the CPU being used in each cluster, and
that with a higher value is presented in the graph. Notice that in each repetition, a different cluster may be
chosen, depending on how the random service requests were deployed by each algorithm. Since the goal of the
ILP algorithm is to minimize such maximum value, one would expect ILP to always be below LB. This is indeed
the case for most repetitions, as observed in the Figure, since for a given X-axis value, the circle is always below
the diamond. However, one can also observe average service loads for which this is not the case. And this be-
haviour is much more common, as we get closer to the highest evaluated loads. The explanation is that since ILP
is capable of deploying more services, more CPU workload is deployed in the clusters of the system, and so, in
general, there may be clusters that have a maximum CPU usage, bigger than the maximum of LB.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

Figure 4: Comparison of ILP vs. LB: Not allocated services normalized to the number services of requested in each repetition.
One value per repetition over all loads evaluated.

Figure 5: Comparison of ILP vs. LB: Maximum cluster load normalized to cluster capacity. One value per repetition over all
loads evaluated, i.e., in each repetition, the point represents the normalized load of the cluster with highest load among all
clusters.

Another observation is that, again, the LB shows a broader range of values than ILP, for which trend follows a
quite well-defined linear trend. This also shows that the load in the clusters is more evenly balanced for ILP, since
even if the cluster in a given repetition with the maximum load is different from that of another, the difference
is not so big, since the dispersion seems to be much smaller, and so, the other clusters are expected to have very
similar CPU usage. This is confirmed in the following Sections.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

2.3.4 Analysis of load distribution in clusters: per-cluster load

Figure 6 shows more details of the behaviour of each of the clusters for both schemes (asterisks for LB and dots
for ILP). Again, the same behaviour explained above is confirmed, for which ILP seems to load balance evenly,
since all dots are grouped in an almost perfect line. However, for low and high loads, this is not the case. In both
cases, this is due to the varying workloads of services. Therefore, despite being evenly distributed, if one bigger
service is deployed in a given cluster, and those of the other can be more easily packed, we will notice a differ-
ence between cluster loads due to this randomness of service workloads. For higher loads, this randomness may
result in a big service not being deployed, because it does not fit in the system, and so the total workload to be
deployed would be much lower than other repetitions, where there are no such big differences among services.
In any case, the dispersion in LB is much higher, as also observed before, which results in some edge cluster being
quite full, while others have much lower occupancy. This would allow the latter clusters to receive more services,
but if it is precisely in the more loaded ones, where it should be deployed, due to service requirements. This
would pose some problems in emergency scenarios. This situation is less likely to happen with ILP.

Figure 6: Comparison of ILP vs. LB: Cluster load of each cluster normalized to cluster capacity. One value per repetition over
all loads evaluated, i.e., in each repetition, the point represents the normalized load of each cluster at the end of each
repetition. There is one series of values for each of the four clusters for each algorithm evaluated.

Figure 7 presents the cumulative distribution function of the normalized cluster load for each cluster. We are
particularly interested in the behaviour close to cluster capacity, since it is in these regions where the resource
efficiency of algorithms comes more into play. In this region, the cumulative distribution function (CDF) graph
shows that ILP has lower normalized cluster loads than LB for all clusters, which implies that there is more room
to receive more services, hence to host more CPU workloads. As deduced from the graph, it is more common to
have clusters operating in the mid loads region (from 0.5 to 0.75 normalized loads). As previously discussed, this
is due to the global load balancing capabilities of ILP, because it considers all the service requests and all the
available resources in a global manner. This allows distributing the services more evenly, resulting in higher re-
source consumption efficiency.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

Figure 7: Comparison of ILP vs. LB: Cumulative distribution function of each cluster load, normalized to cluster capacity.
There is one series of values for each of the four clusters for each algorithm evaluated.

Another way of representing this behaviour is by averaging over all repetitions of a given load. In this case, the
trends are clearer, since all clusters behave in the same way in ILP, and there is more dispersion in LB. In fact,
higher workloads can be absorbed by ILP, which can deploy services to almost completely fill the system. This is
not the case for LB, whose average cluster load is substantially smaller at high average service loads.

Figure 8: Comparison of ILP vs. LB: Average cluster load normalized to cluster capacity over all repetitions of a given load.
There is one series of values for each of the four clusters for each algorithm evaluated.

Finally, Figure 9 gives another point of view of the same aspect, i.e., a more homogeneous behaviour of clusters
when using ILP and a more even distribution of loads. This is observed in the overlapping standard deviation
curves for ILP, and the higher dispersion of values and higher values for LB.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

Figure 9: Comparison of ILP vs. LB: Standard deviation of cluster load, normalized to cluster capacity over all repetitions of
a given load. There is one series of values for each of the four clusters for each algorithm evaluated.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

3 Experimental setup

To ensure a comprehensive understanding, this Section will delve deeper into the software elements utilized.
We will discuss the specifications of the cross-testbed federation, elucidate the process by which various Kuber-
nets (K8s) clusters join the federation, and, most importantly, unpack the logic and functioning of the service
placement. Our experimental approach centres around leveraging the capabilities of Karmada (Open, Multi-
Cloud, Multi-Cluster Kubernetes Orchestration)1, an open-source platform designed to deploy application con-
tainers across multi cluster environment, to harness the advantages of an orchestrator, where multiple K8s clus-
ters join to form an integrated, synchronized environment. This configuration facilitates a centralized control –
attributes essential for agile and responsive PPDR solutions. The idea of cross-testbed federation is conceptual-
ized in Figure 10. The K8s-based orchestrator manages and provides access to service resources for the individual
testbed containerized workloads, hence providing multi-clustered K8s orchestration across different domains,
which allows testbed federation and synchronization.

Figure 10: Cross Testbed Federation for 5G EPICENTRE.

Using Karmada, the K8s management system enables cloud-native applications to run across multiple K8s clus-
ters, with no changes to the application. It allows application deployment and resource management on multiple
clusters, known as member clusters, from the centralized Karmada control plane. Moreover, Karmada allows the
federation of any K8s resources to be used in a multi-cluster environment. As an initial approach, Karmada pro-
vides a cluster federation across different testbed infrastructures, as shown in the next Section, by creating a
new abstraction of a federation layer. However, considering the architecture needs of the 5G-EPICENTRE, more
functionalities can be further developed for an end-to-end service across 5G-EPICENTRE testbed infrastructures.

3.1 Architecture

The architecture presented in this Section (Figure 11) encompasses the backend layer, the federation layer where
Karmada is deployed, and the scheduler housing the service placement module. By assimilating these consider-
ation factors, such as latency and resource availability, the service placement can make intelligent choices on
workload placements, ensuring that resources are allocated, while the requirements are fulfilled. Referring to
deliverable D4.4, Karmada’s scheduler provides advanced management of the workloads across different
testbed infrastructures of 5G-EPICENTRE, and enables standalone propagation through policy Application Pro-

1 https://karmada.io/

https://karmada.io/

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

gramming Interface (API) for multi-cluster scheduling (placement), to fulfil the federated resource request effi-
ciently. In this sense, it may be offering the functionalities assigned to the service placement component (see
section 2.2) in 5G-EPICENTRE.

Back-end layer

metrics
tracker

monitoring
metrics

RabbitMQ

API server

Karmada control-plane

Scheduler ETCD

Execution
controller

Binding
controller

Policy
controller

Cluster
controller

Optimizer

ILP
Solver

server

UMA cluster

API server

Scheduler ETCD

Controller
Manger

CTTC cluster

API server

Scheduler ETCD

Controller
Manger

HHI cluster

API server

Scheduler ETCD

Controller
Manger

ALB cluster

API server

Scheduler ETCD

Controller
Manger

Federation layer

fetch

subscribe to
topic

Cluster resource plugin

request
metrics

5G traffic simulator Exp coordinator Open API Server JFrog Helm repository

Figure 11: General architecture. This Figure depicts the main components that are connected to the scheduler, to perform
the service placement.

3.1.1 Experiment Coordinator deployment

The Experiment Coordinator is the element in charge of coordinating the deployment of the experiments re-
quested through the Portal in the different clusters that make up the Karmada federation. This element is located
in the Backend layer, where it makes use of the different elements of that layer to carry out its work, as shown
in the Figure 11. In general, the module is in charge of the coordinating the deployment of the different experi-
ments in the selected cluster.. To perform the deployment of the experiments, the Experiment Coordinator re-
ceives from the Portal the information in the form of a JSON file (Experiment Descriptor). The Descriptor contains
information about the name of the experiment to be deployed, the date and duration of the experiment and the
namespace where it will be deployed. Once this information is obtained, the deployment of a Helm repository
is obtained. In addition, it is possible to use the 5G Traffic Simulator Manager to inject 5G traffic into the network
where the experiment will be executed to simulate the different possible scenarios. The experiment execution
workflow, and all of the components involved, are described in detail in deliverable D2.5.

The integration with Karmada is done by promoting the namespaces of the different clusters in the Karmada
cluster. For the deployment of the different resources, the propagation policies specified for each use case must
be used.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

3.1.2 Metric measurement

In this Section, we focus on the solutions for measuring the metrics from clusters sent to a RabbitMQ message
queue. As it is mentioned in D4.4, RabbitMQ acts as an intermediary or middleware, allowing components to
exchange messages asynchronously and reliably. In the CTTC testbed, RabbitMQ with an MQTT plugin2 is de-
ployed in a testbed instance (TI), to use Message Queuing Telemetry Transport (MQTT)-type queue. The broker
uses one exchange that generates queues dynamically as needed. The routing key “application” is used to publish
experiment data to broker. The LXC VM, where RabbitMQ is installed, is based on Ubuntu 20.04 LTS. The Rab-
bitMQ Management Dashboard is available at TCP port 15672. In the proposed architecture, RabbitMQ connects
to the metric tracker modules, enabling it to publish metrics such as real-time RTT values, or aggregated available
CPU resources for each cluster. Additionally, it establishes a connection with the Karmada scheduler, to enable
the scheduler to fetch cloud cluster latency information for managing service placement.

3.1.2.1 RTT measurements

In this Section, the focus is on measuring RTT to a specified destination IP address, and publishing the measured
RTT values to a RabbitMQ server. The solution utilizes a Python script, the "ping" command for RTT measure-
ment, and the Paho MQTT library3 for data publication. The primary objective of this RTT implementation, is to
monitor network connectivity and latency to a remote machine, thereby enabling proactive troubleshooting and
performance analysis.

The RTT measurement process involves executing the ping command and extracting the average RTT value from
the output using a regular expression. The data publication process is also detailed, where a connection to the
RabbitMQ server is established, and RTT values are published as messages to a designated topic. The measure-
ment operates in a continuous loop, systematically measuring RTT at predefined intervals and efficiently dissem-
inating the data to RabbitMQ for further analysis.

The "publish.single" function from the Paho MQTT library is used to publish the measured RTT value to the Rab-
bitMQ server, and a topic variable is used to specify the name of the topic, where the data will be published. In
this case, the topic is named "application".

The publish.single function takes the following arguments:

 topic: The topic name to which the message will be published.

 payload: The data to be sent as the message.

 hostname: The hostname, or IP address of the RabbitMQ server.

 port: The port number used to connect to the RabbitMQ server.

 auth: A dictionary containing the username and password for authentication with the RabbitMQ server.

An example of the JSON message that is sent to RabbitMQ is illustrated in Figure 12. When the script executes
and measures the RTT, it will send a message in this JSON format to the RabbitMQ server, allowing the scheduler
to subscribe to the specified topic, and receive and process the RTT data accordingly.

3.1.3 Karmada and scheduler

Karmada is installed within a single K8s cluster located at CTTC. This serves as the central control plane for the
federation. Using the established Virtual Private Network (VPN) connections, the K8s cluster hosted within each
testbed can be seamlessly joined to the federation created by Karmada as member clusters. This means that the
resources and capabilities offered by these individual testbeds become part of the larger federation.

2 The MQTT plugin for RabbitMQ enables connecting the client to an MQTT broker using the AMQP protocol.
3 https://pypi.org/project/paho-mqtt/

https://pypi.org/project/paho-mqtt/

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

Figure 12: Example of tracking RTT which will be formatted into a JSON message and sent to the RabbitMQ server.

3.1.3.1 Scheduler

At the heart of Karmada is the Scheduler, a critical component responsible for determining how workloads
should be distributed across multiple clusters. The importance of the scheduler in Karmada cannot be over-
stated. As verticals scale and deploy their applications across multiple Kubernetes clusters, possibly spanning
different cloud providers and regions, efficient workload distribution becomes paramount. In addition, high avail-
ability is maintained by distributing replicas of a workload across different clusters, ensuring that a failure in one
cluster does not bring down the entire application.

Basically, the scheduler monitors changes in resources via a watch API connected to the Karmada API server
(refer to Figure 11). Upon detecting changes, the scheduler initializes its operations using two core components:
the cache and the registry, taken from the Cache and runtime Registry interfaces, respectively. Depending on
active configurations, the scheduler may invoke either the Filter Plugin, the Score Plugin, or both. Once the
scheduling template is created, incorporated into the primary Karmada scheduler’s plugin list, ensuring it is op-
erational when handling new workloads. Subsequent to these steps, the assign replica function designates the
appropriate clusters for specific resources using its replica scheduling logic. If no appropriate cluster can be
found, this triggers the de-scheduling module, which is a separate component within Karmada. Concluding the
process, the Binding method is invoked, adapting the placement, and updating the resource binding objects post-
scheduling, based on the chosen placement strategy.

The Karmada scheduler, like the Kubernetes scheduler, leverages a modular framework that allows for extensi-
bility and customization through plugins. By default, the Karmada scheduler comes with a collection of plugins
that provide a set of functionalities, each operating at specific extension points (like filtering and scoring). These
plugins include:

 The Cluster Affinity plugin in Karmada is instrumental in ensuring workloads adhere to specific affinity
rules. This plugin specifically checks if a resource's selector aligns with a cluster's labels. Labelling is a
mechanism in Karmada, that an administrator can assign a name to a cluster, to dictate which specific
applications are suitable to run on a certain cluster. If a match is found, it indicates that the workload
has an affinity to that particular cluster, guiding the scheduler's placement decision.

 The API Enablement plugin in Karmada checks the readiness and presence of the necessary API, typically
a Custom Resource Definition (CRD), in the target cluster. This ensures that the cluster can support the
desired resource type before any scheduling decisions are made, thereby avoiding potential incompati-
bilities, or failures post-scheduling.

 Cluster Eviction is crucial in scenarios where resources within a cluster become constrained, either due
to overutilization or failures.

 Cluster Locality is a scoring plugin within Karmada, which prioritizes clusters that already host a given
resource. By doing so, it potentially reduces the need for data transfer, maintains data locality, and can

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

enhance the performance of certain applications by minimizing latency and ensuring related compo-
nents reside within the same cluster.

 The Spread Constraint plugin ensures that workloads adhere to the desired distribution properties de-
fined in the specification of clusters (cluster.Spec).This plugin checks and enforces these spread proper-
ties, ensuring that workloads are distributed across clusters in a manner that aligns with predefined
specifications.

3.1.3.2 Cluster Resource plugin integration

To meet the objectives detailed in Section 2, we introduced a newly crafted plugin named cluster resource, which
integrates with the standard scheduler in the Karmada system. Its primary role is to ensure the achievement of
essential KPIs, by determining the best placement for any given service. While the plugin operates independently
from both the service and the infrastructure, it extracts crucial metrics, with a focus on latency, for scheduling
the PPDR service. Similar to native plugins in the Karmada scheduler, the cluster resource plugin includes primary
structure. First let us elaborate on the specific steps taken to implement a custom scheduler plugin within the
Karmada environment. As a point of reference, the established karmada-scheduler implementation within
“pkg/scheduler/framework/plugins” of the Karmada source directory was consulted [13]. Consequently, the di-
rectory structure post-development resembled:

FilterPlugin

 APIEnablement

 ClusterAffinity

 ClusterEviction

 SpreadConstraint

 TaintToleration

 ClusterResource

 cluster_resource.go

ScorePlugin

 ClusterAffinity

 ClusterLocality

As shown in Figure 13, The principal file, cluster_resource.go, was structured with core GoLang constructs.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

Figure 13: An example of implementation of cluster resource plugin in Karmada scheduler

Essential imports, such as context and various Karmada packages formed the basis of the code. This plugin is
developed as a filtering extension, which is called during Filtering phase. As a next step, the plugin was registered
within the “cmd/scheduler/main.go” file (Figure 14).

Figure 14: Plugin registration

The NewSchedulerCommand function, crucial for the plugin’s instantiation, was edited to pass the plugin config-
uration. This allowed for the effortless detection and activation of the plugin during runtime. Finally, the execut-
able code of scheduler is enclosed within a container image (Figure 15 b), and called along with other standard
plugins during scheduling.

3.1.3.3 Cluster Resource plugin workflow

Similar to the standard plugins, which use Filter extension points, our Cluster Resource plugin receives two APIs,
“cluster v1 alpha1” and “policy v1 alpha1”, to access the essential information related to status of cluster and
service requirements. On the other hand, to retrieve the CPU data of each cluster, the plugin employs both
internal and external methods. It either communicates through an internal interface, or uses a client API to query

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

(a

(b

Figure 15: a) Represents the process of updating the scheduler image to include a new plugin; and b) confirms that the
container has been pulled from the repository, and is running successfully in the pod.

the K8s’ API server about the allocatable resources of each member cluster. Additionally, it subscribes to a Rab-
bitMQ broker topic, to fetch cluster-to-emergency latency. We have integrated a RTT tracker module, that peri-
odically monitors response time to the Cloud cluster, encapsulating it as “rtt” payload, and publishing it to Rab-
bitMQ (Figure 12).

The Optimizer modules collaborate with the cluster resource plugin in solving service placement problems. To
expedite these computations, an ILP Solver, which is presented in section 2, is in place, which might be running
on a server, presumably a Flask server. Upon receiving inputs, the scheduler activates these modules to compute
the optimal solution, as detailed in Section 2.2, and subsequently forwards the results back to the scheduler. The
available resource for a given cluster, is the aggregated allocatable CPU of all nodes, while end-to-end (E2E)
latency represents the response time from master node to the end user. The cluster resource algorithm employs
a linear programming technique to tackle the placement problem, striving to minimize the maximum load of any
cluster, without surpassing metric constraints. This results in efficient load balancing, when deploying multiple
services at the same time, as in an emergency scenario (see Section 2 for a detailed account).

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

4 Conclusions

This deliverable is dedicated to an extensive evaluation of Task 2.3 regarding service placement strategies with
a particular focus on PPDR scenarios. Our study utilized the service function (SF) concept, and employed the ILP
approach to optimize the allocation of computational and network resources across various clusters. In the the-
oretical part, the results of our analyses highlight the superior performance of ILP in comparison to the LB
method, which served as our benchmark.

The first analysis revealed that ILP consistently outperformed LB in terms of resource allocation efficiency, main-
taining lower levels of unallocated CPU workloads even under high-demand conditions. This demonstrates that
ILP is better suited to support critical services in emergency situations. Furthermore, our investigation into ser-
vice deployments showed that ILP was capable of deploying a greater number of services compared to LB, par-
ticularly under high load conditions. This underscores ILP's effectiveness in managing service placements, ensur-
ing that critical services are deployed without waiting in queue, which lead to minimum service creation time.

Our load distribution analysis illustrated ILP's ability to evenly distribute workload across clusters, minimizing the
maximum load on any single cluster. This not only prevents bottlenecks, but also enhances the overall efficiency
and performance of the system. In contrast, LB displayed a tendency to unevenly distribute load, particularly
when clusters had varying capacities. This could potentially lead to suboptimal resource utilization and decreased
system performance.

In conclusion, the ILP approach to service placement proves to be a robust and efficient strategy, particularly in
PPDR scenarios challenging and dynamic environments. Our findings highlight the importance of intelligent ser-
vice placement strategies in optimizing resource utilization, enhancing system performance, and ultimately, sup-
porting swift and effective decision-making in critical situations.

In addition, our experimental development provides an innovative plugin integrated within the Karmada system.
This plugin not only augments the Karmada system's capabilities but also offers a flexible framework that can be
easily extended to integrate with other modules of project as required. By addressing service placement with a
focus on critical metrics such as latency and computational resources, this novel plugin has demonstrated its
suitability in meeting the stringent requirements of PPDR use cases. The successful development and integration
of this plugin mark a significant step towards optimizing resource allocation and enhancing the performance of
dynamic network environments.

D2.4 5G EPICENTRE service placement

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

References

[1] Tabatabaei, F., Khalili, H., Requena, M., Kahvazadeh, S., & Mangues-Bafalluy, J. (2023, July). Dynamic service
placement in 6g multi-cloud scenarios. In 2023 23rd International Conference on Transparent Optical Net-
works (ICTON) (pp. 1-4). https://doi.org/10.1109/ICTON59386.2023.10207547

[2] Tajiki, M. M., Salsano, S., Chiaraviglio, L., Shojafar, M., & Akbari, B. (2018). Joint energy efficient and qos-
aware path allocation and vnf placement for service function chaining. IEEE Transactions on Network and
Service Management, 16(1), 374-388. https://doi.org/10.1109/TNSM.2018.2873225

[3] Hawilo, H., Jammal, M., & Shami, A. (2019). Network function virtualization-aware orchestrator for service
function chaining placement in the cloud. IEEE Journal on Selected Areas in Communications, 37(3), 643-655.
https://doi.org/10.1109/JSAC.2019.2895226

[4] Wang, X., Wu, C., Le, F., Liu, A., Li, Z., & Lau, F. (2016). Online vnf scaling in datacenters. In 2016 IEEE 9th
International Conference on Cloud Computing (CLOUD) (pp. 140-147). https://doi.org/10.1109/CLOUD.2016.0
028

[5] Pham, C., Tran, N. H., Ren, S., Saad, W., & Hong, C. S. (2017). Traffic-aware and energy-efficient vnf placement
for service chaining: Joint sampling and matching approach. IEEE Transactions on Services Computing, 13(1),
172-185. https://doi.org/10.1109/TSC.2017.2671867

[6] Moualla, G., Turletti, T., & Saucez, D. (2019). Online robust placement of service chains for large data center
topologies. IEEE Access, 7, 60150-60162. https://doi.org/10.1109/ACCESS.2019.2914635

[7] Harutyunyan, D., Shahriar, N., Boutaba, R., & Riggio, R. (2020). Latency and mobility–aware service function
chain placement in 5G networks. IEEE Transactions on Mobile Computing, 21(5), 1697-1709. https://doi.org/1
0.1109/TMC.2020.3028216

[8] Sonkoly, B., Szabó, R., Németh, B., Czentye, J., Haja, D., Szalay, M., et al. (2020). 5G applications from vision
to reality: Multi-operator orchestration. IEEE Journal on Selected Areas in Communications, 38(7), 1401-1416.
https://doi.org/10.1109/JSAC.2020.2999684

[9] Dräxler, S., Karl, H., Kouchaksaraei, H. R., Machwe, A., Dent-Young, C., Katsalis, K., & Samdanis, K. (2018). 5G
os: Control and orchestration of services on multi-domain heterogeneous 5g infrastructures. In 2018 Euro-
pean Conference on Networks and Communications (EuCNC) (pp. 1-9). https://doi.org/10.1109/EuCNC.2
018.8443210

[10] Benkacem, I., Taleb, T., Bagaa, M., & Flinck, H. (2018). Optimal vnfs placement in cdn slicing over multi-
cloud environment. IEEE Journal on Selected Areas in Communications, 36(3), 616-627. https://doi.org/10.110
9/JSAC.2018.2815441

[11] Santoyo-González, A., & Cervelló-Pastor, C. (2018). Latency-aware cost optimization of the service infra-
structure placement in 5g networks. Journal of Network and Computer Applications, 114, 29-37.
https://doi.org/10.1016/j.jnca.2018.04.007

[12] IBM ILOG CPLEX Optimization Studio. Accessed: Apr. 1, 2020.[Online]. Available:
https://www.ibm.com/products/ilog-cplex-optimization-studio/

[13] https://karmada.io/docs/developers/customize-karmada-scheduler#deploy-a-plugin

https://doi.org/10.1109/ICTON59386.2023.10207547
https://doi.org/10.1109/TNSM.2018.2873225
https://doi.org/10.1109/JSAC.2019.2895226
https://doi.org/10.1109/CLOUD.2016.0028
https://doi.org/10.1109/CLOUD.2016.0028
https://doi.org/10.1109/TSC.2017.2671867
https://doi.org/10.1109/ACCESS.2019.2914635
https://doi.org/10.1109/TMC.2020.3028216
https://doi.org/10.1109/TMC.2020.3028216
https://doi.org/10.1109/JSAC.2020.2999684
https://doi.org/10.1109/EuCNC.2018.8443210
https://doi.org/10.1109/EuCNC.2018.8443210
https://doi.org/10.1109/JSAC.2018.2815441
https://doi.org/10.1109/JSAC.2018.2815441
https://doi.org/10.1016/j.jnca.2018.04.007
https://www.ibm.com/products/ilog-cplex-optimization-studio/
https://karmada.io/docs/developers/customize-karmada-scheduler#deploy-a-plugin

