

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE Network
Applications for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D2.5: 5G-EPICENTRE Experiment execution

Delivery date: October 2023

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Network Appli-

cations for public proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

Ref. Ares(2023)7430652 - 31/10/2023

https://www.5gepicentre.eu/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D2.5: 5G-EPICENTRE Experiment execution

Work Package WP2: Cloud-native 5G NFV

Task(s) T2.4: Experiment coordination and lifecycle management

Type Report

Dissemination Level Public

Due Date M34, October 31, 2023

Submission Date M34, October 31, 2023

Document Lead Almudena Díaz Zayas (UMA)

Contributors Jorge Márquez Ortega (UMA)

Apostolos Siokis (IQU)

Internal Review Konstantinos Apostolakis (FORTH)

Hamzeh Khalili (CTTC)

Disclaimer: This document reflects only the author's view, and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 17/07/2023 Initial deliverable structure
Almudena Díaz Zayas (UMA)

V0.2 15/07/2023 50% of the deliverable content
Almudena Díaz Zayas (UMA)

Jorge Márquez Ortega (UMA)

V0.3 02/10/2023 90% of the deliverable content

Almudena Díaz Zayas (UMA)

Jorge Márquez Ortega (UMA)

Apostolos Siokis (Iquadrat)

V1.0 16/10/2023 Internal Review Version Almudena Díaz Zayas (UMA)

V1.1 24/10/2023 1st version with suggested revisions Hamzeh Khalili (CTTC)

V1.2 24/10/2023 2nd version with suggested revisions Konstantinos Apostolakis (FORTH)

V1.3 29/10/2023 First revisions after internal review
Almudena Díaz Zayas (UMA)

Jorge Márquez Ortega (UMA)

V1.5 31/10/2023
Quality check/review: formatting, typeset-
ting and proof-reading.

Konstantinos Apostolakis (FORTH)

V2.0 31/10/2023 Final version for submission Almudena Díaz Zayas (UMA)

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der an-
gewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

5GTSM 5G Traffic Simulator Manager

API Application Programming Interface

DB Database

ExaaS Experiments as a Service

GA Grant Agreement

HSPF Holistic Security and Privacy Framework

K8s Kubernetes

KPI Key Performance Indicator

MANO Management and Orchestration

MQ(TT) Message Queueing (Telemetry Transport)

N/A Non Applicable

(C/V)NF Network Function

NFV Network Functions Virtualization

NS Network Service

QoE Quality of Experience

QoS Quality of Service

UC Use Case

UI User Interface

WP Work Package

ELCM Experiment Lifecycle Manager

JSON Java Script Object Notation

YAML Yet Another Markup Lenguage

REST Respresentational State Transfer

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

Executive summary

This deliverable is the result of the work carried out in Task 2.4 of the 5G-EPICENTRE project, where the main
goal is to apply an experimentation methodology to test the performance of the solutions being experimented
with, in order to assess their capabilities.

The deliverable describes the experimentation workflow used to perform the testing of network applications on
the 5G-EPICENTRE platforms. The correct realization of the experimentation workflow is key to understand how
to use the infrastructure to test applications. Moreover, the document also includes a detailed description of the
software tools developed within the context of Task 2.4. The description of these components and their deploy-
ment will also enable testbed operators to understand and adopt/modify the experimentation methodology.

Based on the above, the main contributions of this deliverable are to describe the full experimentation workflow,
the components developed to support it, and the instructions to deploy these components in new platforms,
that would be interested in adopting this methodology.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

Table of Contents

List of Figures ... 9
List of Tables .. 10
1 Introduction ... 11

1.1 5G-EPICENTRE experimentation methodology .. 11
1.2 Mapping of project’s outputs ... 13

2 Experiment Coordinator .. 15
2.1 Design ... 18

2.1.1 Scheduler ... 18
2.1.2 Resource availability .. 20
2.1.3 Experiment configuration .. 20

2.2 Implementation .. 21
2.2.1 ExperimentRun class .. 21
2.2.2 ExecutorBase class ... 21
2.2.3 Tasks .. 21

2.3 Northbound and Southbound interfaces ... 22
2.3.1 Experiment Run ... 22
2.3.2 Experiment Cancel ... 22
2.3.3 Experiment Descriptor ... 22
2.3.4 Experiment Logs .. 23

2.4 Deployment .. 23
3 5G Traffic Simulator Manager ... 25

3.1 Traffic generation ... 25
3.1.1 Remote iPerf Agents .. 25

3.2 Implementation .. 25
3.2.1 Implementation of the 5GTSM .. 26
3.2.2 Implementation of the Remote iPerf agents ... 26

3.3 Northbound and Southbound interfaces ... 27
3.3.1 Start API ... 28
3.3.2 Stop API ... 29
3.3.3 Add iPerf agent API .. 29
3.3.4 Delete iPerf agent API.. 30
3.3.5 Retrieve API ... 30
3.3.6 Retrieve probes API ... 31

3.4 Deployment .. 31
4 Publisher .. 35

4.1 Implementation .. 37
4.1.1 Monitoring to the MQTT queue .. 37
4.1.2 Publication of messages in the MQTT queue .. 37
4.1.3 Fetching of Prometheus measurements ... 37

4.2 Northbound and Southbound interfaces ... 38
4.2.1 Add experiment API ... 38
4.2.2 Remove experiment API .. 38
4.2.3 Publish API ... 39
4.2.4 Fetch metrics API ... 40

4.3 Deployment .. 41
5 Conclusion ... 42

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

References ... 43

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

List of Figures

Figure 1: Components involved in the experiment execution .. 12

Figure 2: Experiment coordinator internal architecture ... 19

Figure 3: Flowchart on the feasibility of running experiments. .. 20

Figure 4: Life cycle of traffic generation .. 25

Figure 5: Publisher component in the context of the 5G-EPICENTRE architecture .. 35

Figure 6: Publisher metadata completion process. ... 36

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions ... 13

Table 2: Experiment descriptor ... 15

Table 3: Example experiment descriptor. ... 17

Table 4: API endpoint used to request the start the execution of tasks. .. 22

Table 5: API endpoint for cancelling the execution of tasks in the Experiment Coordinator. 22

Table 6: API endpoint used to obtain the descriptor file associated with an experiment. 23

Table 7: API endpoint used to obtain the logs of all stages. ... 23

Table 8: Dockerfile example for Docker container creation of the Experiment Coordinator. 24

Table 9: Example YAML file of an Experiment Coordinator deployment in a K8s cluster..................................... 24

Table 10: Configuration of a remote iPerf agent... 26

Table 11: Example of the results published by the remote iPerf agent in the MQTT queue 27

Table 12: API endpoint to start the configuration of a remote iPerf agent. ... 28

Table 13: API endpoint to stop the execution of a remote iPerf agent identified by agent_id 29

Table 14: API endpoint for adding a remote iPerf agent to a 5GTSM. .. 30

Table 15: API endpoint for deleting a remote iPerf agent. ... 30

Table 16: API endpoint to retrieve a dictionary containing the results of a given agent since its last execution. 31

Table 17: API endpoint to retrieve a dictionary containing all the remote iPerf agent ids associated to a 5GTSM
 ... 31

Table 18: Dockerfile to containerize the 5GTSM in a Docker container. .. 31

Table 19: Dockerfile to containerize a remote iPerf agent in a Docker container. ... 32

Table 20: YAML file of 5GTSM deployment in K8s cluster. ... 32

Table 21: YAML file of remote iPerf agents deployment in K8s cluster. ... 33

Table 22: YAML file of a service for container communication in a K8s cluster. .. 34

Table 23: Publisher message format ... 35

Table 24: API endpoint for adding experiments to the Publisher ... 38

Table 25: API endpoint for removing experiments to the Publisher .. 39

Table 26: Access point for publishing in the queue .. 39

Table 27: Endpoint for metrics fetch ... 40

Table 28: Dockerfile to containerise the Publisher ... 41

Table 29: YAML file for the creation of the publisher deployment on a K8s platform ... 41

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

1 Introduction

A description of the elements involved in the execution of experiments will be presented in this deliverable. A
detailed view of its operation and architecture (which is not available in other deliverables) will be presented.

The elements to be described are:

 Experiment Coordinator: Element in charge of the coordination of deployments and the execution of
the different experiments. This element will act as a link between the Portal and the rest of the platform.

 5G Traffic Simulator Manager: This section will describe the element in charge of 5G traffic generation
in the different testbeds associated to the platform. To do so, it will make use of the remote iPerf agents
that will also be described in the same section.

 Publisher: The publisher is the element in charge of publishing the different measurements taken from
the testbeds that make up the platform, as well as collecting and verifying the different KPIs generated
by the experiments that are executed on them.

1.1 5G-EPICENTRE experimentation methodology

The experimentation methodology used in the 5G-EPICENTRE project is an extension of the methodology defined
in the 5Genesis project1. The 5Genesis experiment framework was successfully applied to evaluate mission crit-
ical services. Moreover, the experimentation methodology is test case oriented, which is one of the features
identified in Task 2.4 for the experiment coordinator.

The 5Genesis project has defined and implemented a methodology for conducting experiments at the platforms
level. The 5Genesis experimentation workflow is defined as follows:

 Design and preparation of the experiment.
o Identification of the Key Performance Indicators (KPIs) relevant for the use case and the network

scenarios.
o Definition of the test cases that will enable obtaining the measurements needed to compute the

targeted KPIs and the parametrization of the scenarios.
o Application under test is instrumentalized in order to report the needed measurements to obtain

the targeted KPIs.
o Implementation of the test cases and scenarios.

 Definition of the experiment. After the initial consultancy phase, the experimenter has a list of test cases
and scenarios available in the testbed. The experimenter can choose and combine the test cases and
scenarios in different experiments. Formal description of the experiment is contained inside an Experi-
ment Descriptor, whose information is needed to configure the network and execute the test cases.

 Experiment execution. The desired/requested network configuration is applied, and the experiment is
executed. The application under test as well as the network is under continuous monitoring. The execu-
tion of the experiment can be automated via the definition of automation scripts, or can be executed
manually by the experimenters, or by the end users of the solutions.

 Results and reporting. Measurements collected are available in different formats that can be accessed
for the report’s elaboration and KPIs’ calculations.

The key component of the 5Genesis experimentation methodology is the Experiment Lifecycle Manager (ELCM)
[1], which has been published as an open-source component. This component has been adopted in the 5G-EPI-
CENTRE project for the execution of experiments at the platform level. For the installation of the ELCM in each
testbed it is necessary to install the OpenTAP2 tool before, which allows the automation of the different scripts

1 https://5genesis.eu/
2 https://opentap.io/

https://5genesis.eu/
https://opentap.io/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

executed in the testbed. For the purposes of the 5G-EPICENTRE architecture, the ELCM is considered part of the
platform as a service infrastructure block. To integrate this component into the 5G-EPICENTRE architecture, the
5G-EPICENTRE Experiment Coordinator includes an interface to communicate with the ELCMs, deployed at the
different testbeds.

After adopting this component, the experimentation workflow in 5G-EPICENTRE architecture is listed below. Fig-
ure 1 provides an overview of the 5G-EPICENTRE components that support this experimentation workflow.

Figure 1: Components involved in the experiment execution

 Step 1: The experiment is defined at the 5G-EPICENTRE portal (see D3.2).

 Step 2: The 5G-EPICENTRE portal sends the experiment descriptor of the experiment to the Experiment
Coordinator (described in Section 2). The information received is registered in the Experiment Coordina-
tor, and the experiment metadata is generated. The experiment metadata includes the assigned Exper-
iment Identifier and the Execution Identifier. These two identifiers are key to track the execution of the
experiments and aggregate the measurements of the same experiment in each one of their repetitions.

 Step 3: The Experiment Coordinator is in charge of the deployment of the solutions under test. The im-
ages are downloaded from the Network Service Helm repository (see D4.3), and deployed via Karmada3
on the Kubernetes (K8s) cluster of the platform chosen by the experimenter. An alternative option is for

3 https://karmada.io/

https://karmada.io/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

Karmada to choose the better placement, in case there is not a specific experimentation requirement
that involves its deployment on a platform that meets the requirement.

 Step 4: The Experiment Coordinator communicates with the 5G Traffic Simulation Manager (5GTSM,
described in Section 3), to configure and initiate traffic generation in accordance with the traffic profile
defined during the definition of the experiment.

 Step 5: The Experiment Coordinator populates the metadata of the experiment via the Publisher (de-
scribed in Section 4). This step is needed to “stamp” all the measurements with the correct Experiment
Id and Execution Id.

 Step 6: The experiment is executed, either in automated or manual execution option (depending on the
experimenter preference indicated in the Portal at Step 1). Infrastructure-, network- and application-
level measurements, are injected in the RabbitMQ queue defined as part of the 5G-EPICENTRE architec-
ture (the format of the measurements is defined in D4.1). The 5G-EPICENTRE Analytics Engine (see D2.6)
is in charge of the analysis of the results, and for sending them back to the Portal for KPIs’ visualization.

The implementation details and the Application Programming Interfaces (APIs) offered by these components are
introduced in subsequent sessions. Moreover, the instructions for the deployment of these components are
provided, in order to anticipate other, external testbeds being integrated into the 5G-EPICENTRE ecosystem (af-
ter the conclusion of the project, as part of the platform exploitation plan – see D6.6 [6]).

1.2 Mapping of project’s outputs

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments, both within the formal
Deliverable and Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

T2.4: Experiment coordination and
lifecycle management

“[…] With respect to the Experi-
ment Coordinator, this Task will de-
velop components for: i) experi-
ment scheduling, where execution
of the experiment planned by an
experimenter through the Experi-
ment Planner (T3.3) is orches-
trated”

Section 2.1.1 – Scheduler Section 2 presents details of the in-
ternal operation of the Experiment
Coordinator component, which in
in charge of the management of
the lifecycle of the experiment.
Section 2.1.1 in particular, pre-
sents details of the internal com-
ponent that handles planning of
the experiment, and manages their
execution at pre-run stage.

T2.4: Experiment coordination and
lifecycle management

“[…] ii) experiment timeslot run-
ning process queue AI-manager,
which will autonomously monitor
availability of resources so as to de-
termine which experiments will be
ran on top of the infrastructure (in-
cluding concurrent execution, if re-
sources permit)”

Section 2.1.2 – Resource availabil-
ity

Section 2 presents details of the in-
ternal operation of the Experiment
Coordinator component, which in
in charge of the management of
the lifecycle of the experiment.
Section 2.1.2 in particular, pre-
sents details on the feasibility
study check that is performed,
which creates a waiting loop until

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

the required resources to execute
the experiment are available.

T2.4: Experiment coordination and
lifecycle management

“[…] the Multi-container applica-
tion composer, which will produce
the necessary experiment configu-
ration files that identify VNF con-
tainers to be instantiated during
experiment execution”.

Section 2.1.3 – Experiment config-
uration

Section 2 presents details of the in-
ternal operation of the Experiment
Coordinator component, which in
in charge of the management of
the lifecycle of the experiment.
Section 2.1.3 presents the differ-
ent configurations for correct op-
eration of the experiments.

T2.4: Experiment coordination and
lifecycle management

“[…]The Experiment Coordinator
will also implement the execution
of standardized test cases defined
by standardization or defined by
the project”.

Section 2.2.3 – Tasks This Section describes ‘Test Cases’
as a list of tasks (minimum action
that must be performed to deploy
and execute an experiment) to be
executed internally throughout
different stages of experiment ex-
ecution.

T2.4: Experiment coordination and
lifecycle management

“[…] this Task will develop: i) an au-
tonomous service manager, which
aims an intelligent management
and decommission of the neces-
sary resources by specifying the
network slices to be deployed and
communicating with the layers be-
low so as to ensure proper assigna-
tion of the resources”

Section 2.2 – Implementation Section 2.2 presents the execution
logic of the Experiment Coordina-
tor, elaborating on all internal pro-
cesses that take place, from the
moment the experiment de-
scriptor is received, to the actual
deployment and execution of the
experiment.

T2.4: Experiment coordination and
lifecycle management

“[…] ii) a dummy 5G traffic simula-
tor, to emulate varying network
traffic dynamics”.

Section 3 – 5G Traffic Simulator
Manager

Section 3 presents the Traffic Sim-
ulator, developed to generate
background traffic during the exe-
cution of the experiments.

Section 4 – Publisher Section 4 presents the details of
the Publisher which is in charge of
publishing the metadata of the ex-
periments to include it in the
measurements collected at the
testbed level.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

2 Experiment Coordinator

The Experiment Coordinator is the component in charge of coordinating the deployment and execution of the
experiments on the platforms belonging to the 5G-EPICENTRE federation in the selected time slot. It is a central-
ized element, located at the backend layer of the 5G-EPICENTRE architecture, that receives the descriptions of
the actions to be performed from the Portal (via an experiment descriptor exchange structure).

The descriptor is a JavaScript Object Notation (JSON) file, that contains all the needed information for the de-
ployment of the use case, network and traffic configuration and the execution of the experiment.

In order to understand the role of the Experiment Coordinator, it is important to elaborate on the format of the
descriptor. The final version of this descriptor is outlined in Table 2, below:

Table 2: Experiment descriptor

Field Type Description

Application string Name of the application under test.

Automated bool Indicates whether the experiment will be run automat-

ically or not.

ExclusiveExecution bool Indicates whether the execution is to be exclusive or
not.

ExperimentType string Can either be “Standard” or “Custom”. Standard exper-
iments are based on test cases.

Extra.Url string extra field used to for additional information required
to executed the actions, for example, to indicate URL
of the 5GTSM instance.

Extra.ServerProbes Array<Object> Field use for the configuration of the remote iperf
agents servers.

Extra.ClientProbes Array<Object> Field use for the configuration of the remote iperf
agents servers.

NSs Array<string> Name of the services to be deployed.

Parameters.Action string Can either be “deploy” or “delete”. Indicates if the ex-
perimenter wants to deploy, or delete the experiment
in the descriptor.

Parameters.Filename string Name of helm file to be deployed.

Parameters.Testbed_id integer Identifier of the federated testbed.

Parameters.Namespace string Name of the federated k8s cluster where you want to
deploy

Parameters.Netapp_id string Network application identifier

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

HSPF string Can either be “yes” or “no”. Indicates whether the Ho-
listic Security and Privacy Framework network applica-
tion (see D2.7) should be deployed alongside the cur-
rent experiment vertical application microservices.

Parameters.HSPF_microservices Array<string> Indicates which microservices should have sidecars de-
ployed for monitoring.

Parameters.HSPF env_vars Array<string> Additional field for the Holistic Security and Privacy
Framework network application configuration.

Remote bool Unused field for 5G-EPICENTRE (expected by the ELCM,
so needs to be added with a default value of null).

RemoteDescriptor string Unused field for 5G-EPICENTRE (expected by the ELCM,
so needs to be added with a default value of null).

ReservationTime Array<float> An array of two float values representing UNIX
timestamps, indicating start and end times (duration)
of the experiment.

Scenario string Scenarios or list of scenarios available at the platform,
if this field contains more than one scenario the test
cases will be executed consecutively in the different
scenarios.

Slice string Slices or list of slices available at the platform, if this
field contains more than one slice test cases will be ex-
ecuted consecutively in the different scenarios.

TestCases Array<string> TestCases that will be executed by the ELCM.

UEs Array<string> UEs involved in the experiment.

Version string Descriptor version. At present it is set by default to
"2.1.0".

Table 3 lists an example of a descriptor, in order to offer a clear view of its usage. This descriptor belongs to an
experiment in which OneSource’s (ONE) Mobitrust application is deployed at the UMA (Malaga) platform, and
there is no automation (i.e., real ends users will use the application directly). With the information included in
the descriptor, the Experiment Coordinator accesses the Network Service Repository’s OpenAPI server, which
retrieves the Helm chart files from the Helm repository (see D4.3). Once the Helm chart files have been obtained,
the Experiment Coordinator makes use of the Karmada federation (see D4.5), to deploy the use case to the
selected testbed. The configuration of the background traffic (Extra field, in the descriptor) is also provided. This
information is redirected to the 5GTSM, in which the experiment will be executed (the example concerns UMA
platform iPerf configurations). The rest of the information is delivered to the local ELCM. The identifiers gener-
ated by the Experiment Coordinator, associated to the execution of the experiment (i.e., execution id, experi-
ment id, iteration id, etc.) are sent to the Publisher.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

Table 3: Example experiment descriptor.

1 {

2 “Application”: “Mobitrust”,

3 “Automated”: no,

4 “ExclusiveExecution”: true,

5 “ExperimentType”: “Custom”,

6 “Extra”: {

7 “Url”: “http://172.31.253.233:5003/start”,

8 “ServerProbes”: [{

9 “origin”: “UE”,

10 “userId”: “00”,

11 “experiment_id”: “0”,

12 “publish”: true,

13 “device_id”: “iperf_client_01”,

14 “request_body”: {

15 “agent_id”: “remote_iperf_1”,

16 “action”: “Start”,

17 “parameters”: {

18 “-s”: “”,

19 “-u”: “”,

20 “-p”: 6010,

21 }

22 }

23 }],

24 “ClientProbes”: [{

25 “origin”: “UE”,

26 “userId”: “01”,

27 “experiment_id”: “0”,

28 “publish”: true,

29 “device_id”: “iperf_client_02”,

30 “request_body”: {

31 “agent_id”: “remote_iperf_2”,

32 “action”: “Start”,

33 “parameters”: {

34 “-c”: “remote_iperf_1”,

35 “-p”: 6010,

36 “-u”: “”,

37 “-b”: “150M”,

38 “-t”: 300,

39 “-i”: 1,

40 }

41 }

42 }],

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

43 },

44 “NSs”: [],

45 “Parameters”: {

46 “Action”: “deploy”,

47 “Filename”: “mobitrust.zip”,

48 “Testbed_id”: 2,

49 “Use_case_id”: 0,

50 “Namespace”: “uma”,

51 “Netapp_id”: “testing”,

52 “HSPF”: “no”,

53 “HSPF_microservices”: [],

54 “HSPF_ env_vars”: [],

55 },

56 “Remote”: null,

57 “RemoteDescriptor”: null,

58 “ReservationTime”: [

59 1688036400000,

60 1702984381000,

61],

62 “Scenario”: “Ideal”,

63 “Slice”: “Default”,

64 “TestCases”: [

65 “Helm Agent”

66],

67 “UEs”: [],

68 “Version”: “2.1.0”,

69 }

Figure 2 also includes an overview of the information interchanged between the different components of the
Experiment Coordinator, related with the execution of the experiments (default scenario is chosen, and default
slice is used in this indicative example).

2.1 Design

The design of the Experiment Coordinator is based on the ELCM. The Experiment Coordinator expands the func-
tionality offered by the ELCM to support the federation of different experimentation platforms under the same
umbrella. Figure 2 provides an overview of the different modules that compose the Experiment Coordinator. The
Experiment Coordinator offers a northbound interface, for experimenters to support experiment handling and
metadata configuration. The administration interface provides internal access to the management of the tasks
under execution. The scheduler enables the planning of the experiments. Finally, the execution engine is the core
component of the Experiment Coordinator that supports the supervision of the execution of the experiments at
the different platforms.

2.1.1 Scheduler

The Scheduler is the component that manages the execution of the experiments at the Stage level. The stages
defined are:

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

Figure 2: Experiment coordinator internal architecture

 Pre-Run: This stage includes the registration of the deployment request and configuration. A feasibility
study check is also performed and a waiting loop is created for the required resources.

 Run: This stage is where the different tasks involved in the experiment are executed. It is in this stage
where the communication with the 5GTSM takes place, and the deployment is performed in the indi-
cated testbed. It is also where the Holistic Security and Privacy Framework (HSPF) network application is
included (see D2.7 for more information) - if it has been requested.

 Post-Run: During this stage, the resources used by the experiment are released.

All experiments are kept in an internal execution queue, where they transition from one stage to another. When
an experiment enters one of the execution stages, it is handled by an independent Executor, which will execute
tasks one after another until they are completed, or an error is detected. The Experiment Coordinator can re-
spond to events in an asynchronous manner, by receiving them through a REST API. However, the transition
between the different stages of an experiment execution is coordinated by a background thread know as Heart-
beat. This thread periodically triggers a status check of each execution from active experiments (i.e., on any of
the Run stages), triggering the transition to the next stage when an Executor has finished, or making them as
erroneous, or user-cancelled, when necessary. The use of the Heartbeat thread provides a good balance between
performance and parallel execution of different experiments.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

2.1.2 Resource availability

One of the tasks of the Pre-Run stage is to check if it is feasible to run the experiment. If it is not feasible, a
passive wait will be performed, until resources are released. As can be seen in Figure 3, the Experiment Coordi-
nator ensures that each experiment can be safely executed on the platform. It is also capable of handling the
execution of experiments with a first come-first-served system, which means that when two experiments are
waiting for the same resource, the Experiment Coordinator will give priority to the one that has been waiting the
longest.

Figure 3: Flowchart on the feasibility of running experiments.

2.1.3 Experiment configuration

When deploying the Experiment Coordinator, it is necessary to establish certain configurations for correct oper-
ation. These configurations can be established in the config.yml file, created by the application when it is instan-
tiated for this purpose. The application will use this file to read (among other things) the credentials established
for the different elements. Some of the most important credentials that may be established are the following:

 OpenAPI: The internal Network Service Repository module in charge of the communication with the
Helm repository. The established credentials allow access to it. Both this module and the repository are
explained in more detail in D4.3.

 RabbitMQ: By establishing the credentials to access the RabbitMQ queue, the Experiment Coordinator
can publish a message in the queue, indicating the beginning and end of an experiment identified with
its metadata.

 Publisher: With the publisher credentials, the Experiment Coordinator can change the experiment id of
the messages published by an experiment in execution, in order to facilitate its identification.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

2.2 Implementation

This Section will describe details about the logic and implementation of the Experiment Coordinator, from re-
ception of the descriptor, to the deployment and execution of the experiments. The implementation is done
using classes according to the object-oriented programming model with the Python programming language.

2.2.1 ExperimentRun class

This class is responsible for storing updated information about the execution of an experiment. It also contains
information about the Pre-run, Run and Post-run stages of the experiment. When a request is received, the
Scheduler will create a new instance of the ExperimentRun class, identified by a unique id. As part of the param-
eters required for the creation of the ExperimentRun class, it is necessary to provide all the configuration data
involved in the experiment. This data known as Params will be shared with the PreRunner, Executor and PostRun-
ner classes, which are the classes in charge of the stages with the same names. Thanks to this parameter sharing,
the communication between the different stages is facilitated. Two of the most important values of the ‘Params’
variable, are the Descriptor, which is received from the Portal, and contains relevant information about the ex-
periment deployment, 5G traffic generation and experiment identification metadata; and the configuration,
which is obtained during the different phases of the experiment.

The minimum logic for executing threads in parallel is found in the Child class. This class includes functionalities
for the management of the different threads, where the execution of methods is possible, as well as the creation
- and destruction of temporary folders.

2.2.2 ExecutorBase class

The ExecutorBase class extends the Child class. This class provides extra functionality that is in common between
all execution stages (Pre-run, Run and Post-run). It includes information about when the Executor was created,
when it was stated and finished, and the list of messages that have been generated. These messages are stored
separately from the logs and are an efficient method to follow the execution process. For example, a new mes-
sage will be generated when the Executor starts processing a new task.

All stages of execution perform a series of Tasks. In the case of the Pre-run and Post-run stages, this list of tasks
is static and the same for all experiments. The tasks executed by the Executor are grouped in ‘Test Cases’ and
are accessible through the ‘RunTask’ variable.

2.2.3 Tasks

A task is the minimum action that must be performed to deploy and execute an experiment. It is possible to
delegate its execution to an external entity. For example, a task can be used to execute a script in OpenTAP, that
will take some measurements, executing the script through commands by which parameters are passed. The
task must be executed for as long as necessary, but only one task can be executed at a time.

Like the ExperimentRun class, Tasks receive the list of necessary parameters obtained from the Descriptor. These
parameters define the behaviour of the task and can assume a condition to execute a given task or not. Some
examples of tasks defined in the Experiment Coordinator for the deployment and execution of experiments are:

 Run.CompressFile: Generates a Zip file containing all the specified files and folders.

 Run.TrafficSimulator: Defines the metadata and initiates traffic generation on the selected remote iPerf
agents through the corresponding 5GTSM.

 Run.CliExecute: Executes a script or command through the command line.

 Run.DeployExperiment: Performs the deployment of an experiment defined in the Portal. It publishes
start and end of experiment execution messages and updates the Publisher with the generated execu-
tion id.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

2.3 Northbound and Southbound interfaces

This Section will show the relevant interfaces offered by the different, final (i.e., superseding prior deliverables)
endpoints of the Experiment Coordinator.

2.3.1 Experiment Run

Endpoint used by the Portal for requesting the execution of experiments (Table 4). The content of this request
includes the Descriptor file content (see also Table 2), with the necessary information for the deployment and
execution of the experiment.

Table 4: API endpoint used to request the start the execution of tasks.

Run API

Method POST

Endpoint /api/v0/run

Request Headers None

Request Body See Table 2.

Response

200 The response contains the execution Id in the format: {“ExectionId": int}

404 Indicates that the connection to the Experiment Coordinator has not been possible.

500 Indicates that there was an error in the input format.

2.3.2 Experiment Cancel

Endpoint for cancelling the execution of an experiment identified by an execution Id (Table 5).

Table 5: API endpoint for cancelling the execution of tasks in the Experiment Coordinator.

Cancel API

Method GET

Endpoint /execution/<id>/cancel

Request Headers None

Request Body None

Response

200 This code indicates that the experiment has been successfully cancelled.

404 Indicates that the connection to the Experiment Coordinator has not been possible.

500 Indicates that there was an error in the input format.

2.3.3 Experiment Descriptor

Endpoint for returning the Descriptor file associated with an experiment identified by the given execution id
(Table 6).

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

Table 6: API endpoint used to obtain the descriptor file associated with an experiment.

Descriptor API

Method GET

Endpoint /execution/<id>/descriptor

Request Headers None

Request Body None

Response

200 Returns the experiment descriptor in JSON format.

404 Indicates that the connection to the Experiment Coordinator has not been possible.

500 Indicates that there was an error in the input format.

2.3.4 Experiment Logs

Endpoint for returning the logs associated with an experiment, identified by its execution Id (Table 7).

Table 7: API endpoint used to obtain the logs of all stages.

Logs API

Method GET

Endpoint /execution/<id>/logs

Request Headers None

Request Body None

Response

200 Returns the logs of the different stages in the format:

{

 “Status”: str

 “PreRun”: <LogInfo>

 “Executor”: <LogInfo>

 “PostRun”: <LogInfo>

}

404 Indicates that the connection to the Experiment Coordinator has not been possible.

500 Indicates that there was an error in the input format.

2.4 Deployment

This Section includes a guide for the deployment of the application on a K8s-based platform. For the containeri-
zation of the Experiment Coordinator, an example Dockerfile can be found in Table 8, that can be used to create
the containers with Docker4.

4 https://www.docker.com/

https://www.docker.com/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

Table 8: Dockerfile example for Docker container creation of the Experiment Coordinator.

1 FROM python:3.10.13-slim-bookworm

2 RUN mkdir /app

3 WORKDIR /app

4 COPY . /app

5 RUN pip install -r requirements.txt

6 EXPOSE 5001

7 CMD ["./start.sh"]

Once the container has been created, a YAML file should be generated for the creation of the deployment in K8s.
An example of such a YAML file can be found in Table 9.

Table 9: Example YAML file of an Experiment Coordinator deployment in a K8s cluster.

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: exp-coord

5 labels:

6 apps: exp-coord

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: exp-coord

12 template:

13 metadata:

14 labels:

15 app: exp-coord

16 spec:

17 containers:

18 - name: exp-coord

19 image: repository_name/5gepicentre:exp-coord

20 ports:

21 - containerPort: 5001

Finally, the deployment must be implemented using the kubectl5 command line tool. This tool is used for the
management and use of a cluster based on k8s.

5 https://kubernetes.io/docs/reference/kubectl/

https://kubernetes.io/docs/reference/kubectl/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

3 5G Traffic Simulator Manager

The 5G Traffic Simulator Manager (5GTSM) is the module in charge of traffic generation in the network at the
time of running an experiment. Traffic generation is based on the iPerf 6, that will be executed by remote iPerf
agents. Thanks to these elements, the 5GTSM can generate traffic between several agents acting as client/server
pairs with the parameters required for the generation of the desired scenario.

3.1 Traffic generation

For traffic generation a POST request containing a JSON file with the necessary data for the configuration of the
agents involved in traffic generation, is sent to a 5GTSM endpoint by the Experiment Coordinator (The 5GTSM is
an element deployed in each of the testbeds).

The 5GTSM instance will compare the IDs of the agents received for traffic generation among those it has stored
and will configure theses agents with the indicated parameters. Once the agents are configured, it will start
traffic generation using the iPerf tool for the time indicated in the configuration. Figure 4 shows the workflow
communication between the Experiment Coordinator and the traffic agents via the 5GTSM:

Figure 4: Life cycle of traffic generation

3.1.1 Remote iPerf Agents

The remote iPerf agent is the agent used to run the iPerf tool. This agent receives from the 5GTSM the configu-
ration parameters and runs the iPerf tool. The results of the iPerf tool are captured by the same remote iPerf
agent and published in the 5G-EPICENTRE MQTT queue in real time.

3.2 Implementation

Both the 5GTSM and the remote iPerf agents offer a REST API programmed in Python for their configuration and
control.

6 https://iperf.fr/

https://iperf.fr/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

3.2.1 Implementation of the 5GTSM

The 5GTSM has several endpoints where it receives the instructions to be carried out. These are explained in
more detail in Section 3.3. As a general overview of the behaviour of the traffic generation feature, the 5GTSM
receives a JSON file via a POST request to the /start endpoint whose content is shown in Table 10. The data
included in the JSON file is used for the configuration of the remote iPerf agents.

Table 10: Configuration of a remote iPerf agent

1 {

2 “netapp_id”: “String”,

3 “origin”: “String”,

4 “UserId”: “String”,

5 “experiment_id”: “String”,

6 “publish”: “boolean”,

7 “request_body”:

8 {

9 “agent_id”: “String”,

10 “action”: “Start/Stop”,

11 “parameters”: {

12 “-s”: “”,

13 “-u”: “”,

14 ...

15 }

16 }

17 }

The file contains the metadata necessary to identify the experiment to which the traffic is applied. The “re-
quest_body” field contains the data to identify the agent and the “parameters” sub-field contains the necessary
flags for the configuration of the iPerf tool.

Once the JSON file is received, it goes through a verification, to check that it is in the correct format. If the veri-
fication is successful, the 5GTSM checks that it has stored the value assigned to the “agent_id” sub-field in its
JSON file for that purpose. If the agent_id exists in that file, the 5GTSM will send the configuration to the corre-
sponding remote iPerf agent.

3.2.2 Implementation of the Remote iPerf agents

A remote iPerf agent is in charge of both the generation of traffic through the iPerf tool, and the publication of
the results obtained by this tool in an MQTT queue.

The remote iPerf agent supports both iPerf 2.x and 3.x versions, as well as Linux and Windows operating systems.
To specify the version of the iPerf tool to be used, as well as establish the credentials of the MQTT queue where
the results are to be published, there is a configuration YAML file (“config.yml”) that must be configured before
the execution of the remote iPerf agents.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

For the execution of the iPerf tool, the agents use the Python library subprocess7, which in turn contains the
popen library. Thanks to this library it is possible to execute commands from the Python application with the
desired parameters. The execution of such a command will be done asynchronously using execution threads.

Once the iPerf tool is running, regular expressions are used to read the output data from the iPerf tool. This data
will be published in the corresponding MQTT queue using the Python paho8 library. Table 11 shows an example
of the messages that the remote iPerf agent publishes in the MQTT queue, when it is generating traffic.

Table 11: Example of the results published by the remote iPerf agent in the MQTT queue

1 {

2 “experiment_id”: “01”,

3 “testbed_id”: “1”,

4 “scenario_id”: “scenario”,

5 “use_case_id”: “use case”,

6 “netapp_id”: “opentap_uma”,

7 “category”: “experiment”,

8 “data”: [

9 {

10 “type”: “throughput”,

11 “unit”: “Mbps”,

12 “origin”: “UE”,

13 “timestamp”: 1693335608373,

14 “value”: 101

15 },

16 “type”: “jitter”,

17 “unit”: “ms”,

18 “origin”: “UE”,

19 “timestamp”: 1693335608373,

20 “value”: 0.054

21 },

22 {

23 “type”: “packet loss”,

24 “unit”: “%”,

25 “origin”: “UE”,

26 “timestamp”: 1693335608373,

27 “value”: 41

28 },

29 ...

3.3 Northbound and Southbound interfaces

This Section will show the interfaces offered by the different endpoints that are exposed by the 5GTSM.

7 https://docs.python.org/3/library/subprocess.html
8 https://eclipse.dev/paho/

https://docs.python.org/3/library/subprocess.html
https://eclipse.dev/paho/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

3.3.1 Start API

An endpoint that executes an iPerf command with its parameters on the iPerf agent identified by ID in the re-
quest body (in JSON format). This is intended to be the normal way to start a server/client on a remote agent
(Table 12).

Table 12: API endpoint to start the configuration of a remote iPerf agent.

Start API

Method POST

Endpoint /start

Request Headers None

Request Body

netapp_id [String] OPTIONAL

OPTIONAL Id for netapp identification.

origin [String] REQUIRED

Origin of the measures. Can be one of {"UE", "RAN", "5GC", "EPC", "main data server",

"edge"}.

userId [String] REQUIRED

User identification.

experiment_id [Number] REQUIRED

Experiment identifier provided by the Experiment Coordinator.

publish [Boolean] REQUIRED

Indicates whether the generated traffic measurements should be published in the Rab-

bitMQ queue, or not.

request_body [Object] REQUIRED

The request body contains the data necessary to identify and configure the agents.

- agent_id [String] REQUIRED

Identifier of the agent involved in traffic generation.

- action [String] REQUIRED

Action to be performed by the agent.

- parameters [Object] REQUIRED

This section includes the agent configuration parameters based on the iPerf tool. There

will be one entry for each configuration flag. A possible example of configuration param-

eters could be:

"parameters": {

 "-c": "Probe2A",

 "-p": 6004,

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

 "-u": "",

 "-b": "150M",

 "-t": 1200,

 "-i": 1

}

Response

200 The response will contain a JSON Object with metadata and iPerf parameters for traf-

fic generation.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.3.2 Stop API

Endpoint for stopping an iPerf server running on a remote agent, identified by a dictionary with keyword
“agent_id” and value “ID” (Table 13).

Table 13: API endpoint to stop the execution of a remote iPerf agent identified by agent_id

Stop API

Method POST

Endpoint /stop

Request Headers None

Request Body

userId [String] REQUIRED

User identification.

request_body [Object] REQUIRED

The request body contains the necessary to identify the agent to be stopped.

- agent_id [String] REQUIRED

Identifier of the agent to be stopped.

- action [String] REQUIRED

Action to be performed by the agent.

Response

200 The Agent specified by the “agent_id” keyword has stopped executing. The response

will contain a JSON with the necessary information for the identification of the agent to

be stopped.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.3.3 Add iPerf agent API

Endpoint for adding the ID of a remote agent. Identified by a given ID, IP and port (Table 14).

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

Table 14: API endpoint for adding a remote iPerf agent to a 5GTSM.

Add iPerf agent API

Method POST

Endpoint /add_iperf_agent

Request Headers Content-Type: application/x-www-form-urlenconded

Request Body

agent_id [String] REQUIRED

Agent identification.

agent_ip [String] REQUIRED

Agent IP.

agent_port [Integer] REQUIRED

Agent port.

Response

200 The Agent specified by the “agent_id” keyword has been added to the 5GTSM. The

response will contain the word “Done!” to confirm that the operation was successful.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.3.4 Delete iPerf agent API

Endpoint for deleting the ID of a remote agent. Identified by a given ID (Table 15).

Table 15: API endpoint for deleting a remote iPerf agent.

Delete iPerf agent API

Method POST

Endpoint /delete_iperf_agent

Request Headers Content-Type: application/x-www-form-urlenconded

Request Body
agent_id [String] REQUIRED

Agent identification.

Response

200 The Agent specified by the “agent_id” keyword has been deleted to the 5GTSM. The

response will contain the word “Done!” to confirm that the operation was successful.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.3.5 Retrieve API

Endpoint for retrieving the results of the previous execution (Table 16). Returns a JSON reporting the success of
the retrieval, a message and list of Results (dictionary with parsed results).

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

Table 16: API endpoint to retrieve a dictionary containing the results of a given agent since its last execution.

Retrieve API

Method GET

Endpoint /retrieve

Request Headers

Request Body

agent_id [String] REQUIRED

Agent identification.

host[String] REQUIRED

Identifies the agent's ip and port with the format, "ip:port".

Response

200 The operation has been successful and returns a dictionary with the results set of the

last execution of the dictionary.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.3.6 Retrieve probes API

Endpoint for retrieving a list of all agents in the 5GTSM (Table 17).

Table 17: API endpoint to retrieve a dictionary containing all the remote iPerf agent ids associated to a 5GTSM

Retrieve Probes API

Method GET

Endpoint /retrieve_probes

Request Headers None

Request Body None

Response

200 Return a list of all agents stored in the 5GTSM.

404 Indicates that the connection to the 5GTSM has not been possible.

500 Indicates that there was an error in the input format.

3.4 Deployment

This Section provides a guide for the deployment of the application on K8s-based platforms. Example Dockerfiles
can be found in Table 18 and Table 19, that can be used to create the containers for the 5GTSM and the remote
iPerf agents, respectively, with Docker.

Table 18: Dockerfile to containerize the 5GTSM in a Docker container.

1 FROM python:3.9-alpine

2 WORKDIR ./src

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

3 COPY requirements.txt .

4 RUN python -m venv venv

5 RUN venv/bin/pip install -r requirements.txt

6 COPY app app

7 COPY config config

8 COPY REST REST

9 COPY iperf-hosts.json .

10 COPY boot.sh ./

11 ENV PYTHONPATH=${PYTHONPATH}:./src

12 RUN chmod +x boot.sh

13 EXPOSE 5003

14 ENTRYPOINT ["./boot.sh"]

Table 19: Dockerfile to containerize a remote iPerf agent in a Docker container.

1 FROM ubuntu:20.04

2 WORKDIR ./src

3 COPY requirements.txt .

4 RUN apt-get update

5 RUN apt-get install python3.9 -y

6 RUN apt install apt-utils -y

7 RUN apt-get install iperf -y

8 RUN apt-get install iperf3 -y

9 RUN apt-get install expect -y

10 RUN apt-get install python3-venv -y

11 RUN python3 -m venv venv

12 RUN venv/bin/pip install -r requirements.txt

13 COPY iperfExecutor iperfExecutor

14 COPY app.py ./

15 COPY boot.sh ./

16 COPY config.yml ./

17 ENV PYTHONPATH=${PYTHONPATH}:./src

18 RUN chmod +x boot.sh

19 EXPOSE 6006

20 EXPOSE 6005

21 ENTRYPOINT ["./boot.sh"]

22 CMD ["6005"]

Once the containers have been created, a YAML file should be generated for the deployment in K8s. Examples
of such YAML files can be found in Table 20 and Table 21, below:

Table 20: YAML file of 5GTSM deployment in K8s cluster.

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

4 name: 5gtsm

5 labels:

6 app: 5gtsm

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: 5gtsm

12 template:

13 metadata:

14 labels:

15 app: 5gtsm

16 spec:

17 containers:

18 - name: 5gtsm

19 image: repository_name/5gepicentre:5gtsm

20 ports:

21 - containerPort: 5003

Table 21: YAML file of remote iPerf agents deployment in K8s cluster.

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: remote-iperf

5 labels:

6 app: remote-iperf

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: remote-iperf

12 template:

13 metadata:

14 labels:

15 app: remote-iperf

16 spec:

17 containers:

18 - name: remote-iperf

19 image: repository_name/5gepicentre:remote-iperf

20 ports:

21 - containerPort: 6006

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 34

Finally, the deployment must be implemented using the kubectl tool. For the communication between the dif-
ferent deployments it is possible to create services. These services will expose IPs for the different components
that can be accessed between them. An example of a service for the 5GTSM is shown in Table 22.

Table 22: YAML file of a service for container communication in a K8s cluster.

1 apiVersion: apps/v1

2 kind: Service

3 metadata:

4 name: epicentre-service

5 spec:

6 selector:

7 spec:

8 app: 5gtsm

9 type: LoadBalancer

10 ports:

11 - protocol: TCP

12 port: 5003

13 targetPort: 5003

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 35

4 Publisher

The Publisher is the component in charge of supervising the interchanged messages for reporting the measure-
ments, adding into these messages the metadata information required to link the measurements with the appli-
cation under test, the testbed, the experiment and the specific execution of the experiment. The Publisher makes
use of queues based on a RabbitMQ Message Broker, which in turn uses the Message Queuing Telemetry
Transport (MQTT) protocol. These queues are classified by a topic, which is identified by a routing key. The Pub-
lisher’s actions depend on subscribing to a queue that shares a common topic (e.g., topic, with routing key “ap-
plication”) the application under test will report the measurement in this queue. The Publisher, which is sub-
scribed to this queue, will read each message that passes through it, will check that the format is correct, and
will fill in the necessary metadata for experiment identification. It will then publish the revised messages in a
queue with different topic (routing key “publisher”), where the rest of the components of the 5G-EPICENTRE
architecture can subscribe and read the messages in the correct format.

The Publisher includes an interface to Prometheus to retrieve the relevant information about the infrastructure.
This information is also published into the “publisher” topic queue. The JSON format that the messages published
in the RabbitMQ queue must follow, and that the Publisher must check and fill in with the relevant metadata, is
shown in Table 23. Figure 5 provides an overview of the role of the Publisher in the 5G-EPICENTRE architecture.

Figure 5: Publisher component in the context of the 5G-EPICENTRE architecture

Table 23: Publisher message format

1 {

2 “$id”: “https://example.com/arrays.schema.json”,

3 “$schema”: “https://json-schema.org/draft/2020-12/schema”,

4 “description”: “The JSON schema for all kind of metrics”,

5 “category”: [“5g_network”, “nfv_mano”, “vnf_chain”, “experiment”], MANDATORY

6 “testbed_id”: [“integer”], MANDATORY, filled by the Testbed (UMA: 1, ALB: 2, CTTC: 3, HHI: 4)

7 “scenario_id”: [“integer”], OPTIONAL, filled by the Testbed

8 “use_case_id”: [“integer”], OPTIONAL, filled by the Testbed

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 36

9 “experiment_id”: [“integer”], OPTIONAL, filled by the Testbed

10 “netapp_id”: [“string”], OPTIONAL, filled by the Use Case APP

11 “device_id”: [“string”], OPTIONAL, filled by the Use Case APP

12 “data”: [Array of data blocks, filled by actual data source (NetApp or Testbed)

13 {

14 “type”: [“string”], MANDATORY

15 “timestamp”: [“long”], MANDATORY, as UTC POSIX timestamp, in milliseconds as a long

16 “origin”: [“UE”, “RAN”, “5GC”, “EPC”, “main data server”, “edge”], MANDATORY

17
 “unit”: [“gbps”, “mbps”, “kbps2, “bps2, “s”, “ms”, “us”, “ordinal”, “rate”, “percent-age”,
 “interval”], OPTIONAL

18 custom fields (key-value pairs as from native metrics):

19 “param1”: [“integer”, “float”, “string”, “bool”],

20 ...

21 “paramN”: [“integer”, “float”, “string”, “bool”]

22 “device_id”: [“string”]

23 }

24 ...

25]

26 }

The Publisher’s metadata completion process can be seen in Figure 6.

Figure 6: Publisher metadata completion process.

The process begins with the publication of data by the testbeds on which the experiments are being ran. The
Publisher will passively “listen” to the data in the queue with topic “application”. The Publisher recognizes each
published message. The format that the messages must follow is the format that is compatible with the Analytics
Engine, so that measurements can be processed correctly.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 37

Some considerations apply when filling in the metadata of the messages. The Publisher has metadata stored for
the different use cases (in the rsc/experiment.json file). If the “category” field of the message contains the value
“experiment”, the value of the “netapp_id” field will be considered to identify the experiment and fill it with the
metadata stored. If the “category” field does not have a value other than “experiment”, or if the “netapp_id”
value is not stored in the Publisher, then the message will be filled with the standard metadata set in the De-
faultConfig file. Any message accepted by the Publisher will be automatically published in the queue identified
with the routing key “amq/topic/publisher”.

The Publisher will also connect to any Prometheus instance that has been configured and monitor the data pe-
riodically (see D1.4). The measurements collected from the Prometheus instance will be published in the Rab-
bitMQ queue with routing key “amq/topic/publisher” for further analysis.

4.1 Implementation

The Publisher implementation is based on a REST API developed in Python. A Flask9 server has been created for
this purpose and is used for its execution.

4.1.1 Monitoring to the MQTT queue

To monitor and publish messages from the RabbitMQ queue that are published by the testbeds, it is first neces-
sary to configure access to the queue. For this purpose the DefaultConfig configuration file in the Helper directory
is used. In the file, in addition to the default messages related to the experiments, there are the credentials for
access to the RabbitMQ queue, and to the relevant Prometheus instance.

The Listener class is used to monitor the messages of the RabbitMQ queue. This class makes use of the Paho
library created for RabbitMQ queue management. Thanks to this library, it is possible to make use of the different
callback functions, that are launched when a message is published in the queue.

4.1.2 Publication of messages in the MQTT queue

For the publication of processed messages from the RabbitMQ queue, certain considerations apply. The rules for
publishing messages are included in the Publisher class. Rules to be considered when filling in the message
metadata are defined by the “category” field of the message. If the value of this field is “experiment”, then it is
mandatory to indicate the “netapp_id” field and value in order to identify the predefined experiment in the
rsc/experiment.json file (as described above). In case the value of “category” is “nfv_mano” or “vnf_chan”, then
the experiment metadata is defined in the message itself. Finally, if the value is “5g_network”, then it is not
mandatory to indicate the metadata.

For the publication of messages, an execution thread is used for each message which will allow several messages
to be published simultaneously while continuing to monitor the queue for new messages.

4.1.3 Fetching of Prometheus measurements

The Prometheus instance data collection is configured in the DefaultConfig file. In this file the queries made to
this instance are defined through calls to a REST API that the instances exposes. These measurements received
from the Prometheus instance do not fit within a single message but the Publisher can detect this problem and
publish the measurements in multiple messages.

Once the Prometheus instance has been configured in the Publisher, it will query its measurements periodically
at an interval configured in the DefaultConfig file.

9 https://flask.palletsprojects.com/en/3.0.x/

https://flask.palletsprojects.com/en/3.0.x/

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 38

4.2 Northbound and Southbound interfaces

This Section will show the interfaces offered by the different endpoints exposed by the Publisher.

4.2.1 Add experiment API

This endpoint is used to send a JSON containing the metadata of a new experiment (Table 24). This metadata is
stored by the Publisher. When the corresponding experiment results are received at the MQTT queue, they will
be filled with this metadata.

Table 24: API endpoint for adding experiments to the Publisher

Add experiment API

Method POST

Endpoint /add_experiment

Request Headers None

Request Body

netapp_id [String] REQUIRED

Required Id for netapp identification.

origin [String] REQUIRED

Origin of the measures. Can be one of {"UE", "RAN", "5GC", "EPC", "main data server",

"edge"}.

use_case_id [String] REQUIRED

User identification.

experiment_id [Number] REQUIRED

Experiment identifier provided by the Experiment Coordinator.

testbed_id [Number] REQUIRED

Identifier of the testbed to which the experiment belongs.

category [String] REQUIRED

Category of messages, may be one between [“5g_network”, “nfv_mano”, “vnf_chain”,

“experiment”]

Response

200 The response contains a message indicating that the experiment has been added.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

4.2.2 Remove experiment API

This endpoint is used to remove an experiment from the list of stored experiments (Table 25).

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 39

Table 25: API endpoint for removing experiments to the Publisher

Remove experiment API

Method POST

Endpoint /remove_experiment

Request Headers None

Request Body
netapp_id [String] REQUIRED

Required Id for network application identification.

Response

200 The response contains a message indicating that the experiment has been removed.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

4.2.3 Publish API

This API endpoint expects a message containing all the mandatory fields and publishes it on the RabbitMQ queue.
This endpoint is meant to be used to publish experiment results, and expects messages to be fully formatted,
unless the experiment has been previously added by the Experiment Coordinator through the /add_experient
endpoint (Table 26).

Table 26: Access point for publishing in the queue

Publish API

Method POST

Endpoint /publish

Request Headers None

Request Body

netapp_id [String] REQUIRED

Required Id for network application identification.

use_case_id [String] REQUIRED

User identification.

experiment_id [Number] REQUIRED

Experiment identifier.

testbed_id [Number] REQUIRED

Identifier of the testbed to which the experiment belongs.

category [String] REQUIRED

Category of messages, may be one between [“5g_network”, “nfv_mano”, “vnf_chain”,

“experiment”]

Data [List]

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 40

- type [String] REQUIRED

- timestamp [Long] REQUIRED

- origin [UE, RAN, 5GC, EPC, main data server, edge] REQUIRED

- unit [gbps, mbps, kbps2, bps2, s, ms, us, ordinal, rate, percentage, interval] OP-

TIONAL

- paramN [Int,Floar, String, Bool] OPTIONAL

- …

- device_id [String] the identification of the device.

Response

200 The response contains a message indicating that the message has been published.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

4.2.4 Fetch metrics API

This endpoint starts fetching new metrics from the Prometheus instances (if they are available), until the time
specified (Table 27).

Table 27: Endpoint for metrics fetch

Fetch metrics API

Method POST

Endpoint /fetch_metrics

Request Headers None

Request Body

metrics [List] REQUIRED

Information about the metrics to be fetched for.

- query [String] REQUIRED

Name of the query to be performed. It must be a valid search as indicated in the

documentation

- unit [String] OPTIONAL

Name of the unit

- origin [UE, RAN, 5GC, EPC, main data server, edge] REQUIRED

end_time [Time when the search ends. Expressed in Hour, Minute, Seconds]

interval [Integer] REQUIRED

Interval of metrics in seconds.

Response

200 The response contains a message indicating that the fetch has been successful.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 41

4.3 Deployment

This Section provides a guide for the deployment on a K8s-based platform. For the containerization of the Pub-
lisher, an example Dockerfile can be found in Table 28, that can be used to create the containers with Docker.

Table 28: Dockerfile to containerise the Publisher

1 FROM python:3.10.13-slim-bookworm

2 RUN mkdir /app

3 WORKDIR /app

4 COPY . /app

5 RUN pip install wheel

6 RUN pip install -r requirements.txt

7 RUN chmod +x start.sh

8 EXPOSE 5050

9 ENTRYPOINT ["./start.sh"]

10 CMD ["5050”]

Once the containers have been created, a YAML file should be created for the creation of the deployment in K8s.
Such an example YAML file can be found in Table 29.

Table 29: YAML file for the creation of the publisher deployment on a K8s platform

1 apiVersion: apps/v1

2 kind: Deployment

3 metadata:

4 name: publisher

5 labels:

6 app: publisher

7 spec:

8 replicas: 1

9 selector:

10 matchLabels:

11 app: publisher

12 template:

13 metadata:

14 labels:

15 app: publisher

16 spec:

17 containers:

18 - name: publisher

19 image: repository_name/5gepicentre:publisher

20 ports:

21 - containerPort: 5050

Finally, the deployment must be implemented using the kubectl command line tool. This tool is used for the
management and use of a cluster based on k8s.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 42

5 Conclusion

This document is related to Task T2.4 “Experiment coordination and lifecycle management”. This deliverable
presented details regarding the experiment coordination in the context of the 5G-EPICENTRE architecture.

The document described the experimentation methodology supported by the 5G-EPICENTRE architecture, and
provided details regarding the implementation and deployment of the components involved in the execution of
the experiment at the backend layer and at the testbed level. A special emphasis has been given to interfaces
and deployment description, in order to provide a deep understanding of the experimentation methodology,
and to ensure a successful adoption by new testbeds during the project exploitation phase.

The experimentation methodology adopted by the 5G-EPICENTRE project provides a flexible environment for
executing experiments, supporting repeatable configurations and fully automated executions based on test
cases, or experimentation definitions created with real users.

D2.5 5G-EPICENTRE Experiment execution

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 43

References

[1] García B., Gallardo, M. M., Merino, P., Eichhorn, F. & Koumaras, H. (2021, March). Deliverable D3.16 Experi-
ment Lifecycle Manager (Release B). 5GENESIS Project. Available at: https://5genesis.eu/wp-content/up-
loads/2021/04/5GENESIS_D3.16_V1.0.pdf

https://5genesis.eu/wp-content/uploads/2021/04/5GENESIS_D3.16_V1.0.pdf
https://5genesis.eu/wp-content/uploads/2021/04/5GENESIS_D3.16_V1.0.pdf

