

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE
Network Applications for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D3.2: 5G EPICENTRE Front-end components

Delivery date: June 2023

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Network Appli-

cations for public proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

Ref. Ares(2024)424 - 01/01/2024

https://www.5gepicentre.eu/

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D3.2: 5G EPICENTRE Front-end components

Work Package WP3: Front-end components and 5G ExaaS APIs

Task(s) T3.2: Novelty experiment insights visualization tools

Type Report

Dissemination Level Public

Due Date M30, June 30, 2023

Submission Date M31, July 31, 2023

M36, December 31, 2023 (revision)

Document Lead Konstantinos C. Apostolakis (FORTH)

Contributors Stefania Stamou (FORTH)

Sozos Karageorgiou (EBOS)

Christos Skoufis (EBOS)

Daniel del Teso (NEM)

Antonio Zanesco (YBQ)

Manos Kamarianakis (ORAMA)

Antonis Protopsaltis (ORAMA)

Almudena Díaz Zayas (UMA)

Ankur Gupta (HHI)

Dani Alcaraz Mora (RZ)

André Gomes (ONE)

Rainer Wragge (OPTO)

Carlos Martins Marques (ALB)

Laurent Drouglazet (ADS)

Internal Review IST

ORAMA

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties, and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 27/03/2023 Initial deliverable structure Konstantinos Apostolakis (FORTH)

V0.2 08/05/2023 50% of the deliverable content
Konstantinos Apostolakis (FORTH)

Stefania Stamou (FORTH)

V0.3 06/06/2023
Northbound Configuration dashboard Sec-
tion (Section 2.2.2) initial draft.

Sozos Karageorgiou (EBOS)

Christos Skoufis (EBOS)

V0.4 12/06/2023
Northbound Configuration dashboard Sec-
tion (Section 2.2.2) updated final draft.

Sozos Karageorgiou (EBOS)

Christos Skoufis (EBOS)

V0.5 16/06/2023 90% of the deliverable content
Konstantinos Apostolakis (FORTH)

Stefania Stamou (FORTH)

V1.0 19/06/2023 Internal Review Version Konstantinos Apostolakis (FORTH)

V1.1 24/06/2023 1st version with suggested revisions
Antonis Protopsaltis (ORAMA)

Manos Kamarianakis (ORAMA)

V1.2 27/06/2023 2nd version with suggested revisions Anna Maria Spagnolo (IST)

V1.5 05/07/2023
First revisions after internal review, includ-
ing formatting and proof-reading

Konstantinos Apostolakis (FORTH)

V1.6 07/07/2023 Second revisions after internal review

Anna Maria Spagnolo (IST)

Antonis Protopsaltis (ORAMA)

Konstantinos Apostolakis (FORTH)

V2.0 10/07/2023 Final version for submission Konstantinos Apostolakis (FORTH)

V2.1 26/12/2023

Implemented revisions after project peri-
odic review and gathering additional inputs
from partners – marked changes for 2nd
round internal review.

Konstantinos Apostolakis (FORTH)

Daniel del Teso (NEM)

Antonio Zanesco (YBQ)

Antonis Protopsaltis (ORAMA)

Almudena Díaz Zayas (UMA)

Ankur Gupta (HHI)

Dani Alcaraz Mora (RZ)

André Gomes (ONE)

Rainer Wragge (OPTO)

Carlos Martins Marques (ALB)

Laurent Drouglazet (ADS)

V2.2 27/12/2023
Suggested revisions after internal review, fi-
nal formatting and proof-reading (quality
check)

Anna Maria Spagnolo (IST)

Manos Kamarianakis (ORAMA)

Konstantinos Apostolakis (FORTH)

V3.0 28/12/2023 Final revised version for submission Konstantinos Apostolakis (FORTH)

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der an-
gewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

Hewlett-Packard Italiana Srl Italy HPE

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

3GPP 3rd Generation Partnership Project

5G PPP 5G Public Private Partnership

5QI 5G QoS Indicator

AdE Adaptation Engine

AF Application Function

API Application Programming Interface

AuthM User Authentication and Management

CI/CD Continuous Integration/Continuous Delivery

CNF Containerised Network Function

CORS Cross-Origin Resource Sharing

CSV Comma Separated Values

DL Downlink

DOM Document Object Model

eMBB Enhanced Mobile Broadband

EPI Experiment Planning Interface

ExCom Experiment Composer

GA Grant Agreement

GUI Graphical User Interface

HSPF Holistic Security and Privacy Framework

IoT Internet of Things

ITools Insights Tools

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

JSON JavaScript Object Notation

JWT JSON Web Token

KPI Key Performance Indicator

mMTC Massive Machine Type Communications

MQTT Message Queuing Telemetry Transport

nappD Network Applications Creation and Management Dashboard

NCD Northbound Configuration Dashboard

NF Network Function

NSBR Network Service Browser

QoS Quality of Service

RBAC Role-Based Access Control

REST Representational State Transfer

UAO Upgradeable, Acceptable, Optimal

UC Use Case

UI User Interface

UL Uplink

URLLC Ultra-Reliable Low Latency Communications

VIS Visualisation Solution

VM Virtual Machine

VNF Virtual Network Function

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

Executive summary

This deliverable constitutes the final report on the 5G-EPICENTRE Front-end Layer architectural components of
the 5G-EPICENTRE platform. Thereby, it constitutes the conclusive report on Work Package 3 activities.

All systems elaborated in the present document constitute user-facing applications which aim at facilitating the
end-user experience with the 5G-EPICENTRE platform in a user-friendly and accessible manner. The current doc-
ument also serves as a means to report on additional functionalities that have been implemented since M14
(referring to the preceding deliverables D3.1 “5G EPICENTRE Northbound API” and D3.3 “5G EPICENTRE User
Interface”); which are now deployed and offered through the 5G-EPICENTRE Portal and Northbound configura-
tion dashboard components.

WP3 has placed emphasis in the development of a richly-featured functional user-facing online platform for
onboarding, testing and eventually, experimenting with vertical and network application software components
for public protection and disaster relief, towards effectively executing experiments in 5G settings. The present
document describes how these features have been implemented and integrated: from uploading experiment
artefacts (as Helm chart packages) and reserving (i.e., “booking”) testbed resources for experimentation, to real-
time monitoring and visualizing outcomes of the scheduled experiment. Following an intent-based user interface
design philosophy, the components of this web portal interface with the Experiment Coordinator (described in
deliverable D2.5) to deliver together the necessary system capabilities with respect to user expectations

In addition to a conclusive report, D3.2 can also be viewed as a manual that can be used by those who wish to
interact with the 5G-EPICENTRE platform (in particular, project target third party experimenters), with the aim
to test and validate their PPDR based solutions over fully featured 5G testbed environments. For this reason,
instructions are included in the form of visual walkthroughs on performing the following series of actions: i)
experiment definition, ii) on-boarding of experiment artefacts, iii) calibration of platform Network Applications
and traffic simulation conditions, and iv) experiment reporting & visualization. Thereby, the current document
includes a section devoted to instructions on the steps that the end-user can follow when they access the Portal
as an experimenter. These contents will be complemented with an instructional video tutorial, which will be
produced as part of the project’s outreach activities in WP6.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

Table of Contents

List of Figures ... 9
List of Tables .. 11
1 Introduction ... 13

1.1 Mapping of project’s outputs ... 14
1.2 Adherence to reviewers’ comments and recommendations on D3.3 ... 16

2 Adherence to project specifications .. 17
2.1 5G-EPICENTRE requirements adherence ... 17
2.2 Relation to the 5G-EPICENTRE architecture ... 21

2.2.1 5G-EPICENTRE Portal ... 22
2.2.2 Northbound configuration dashboard .. 23

3 5G-EPICENTRE Portal implementation .. 26
3.1 Frontend ... 26

3.1.1 Pages .. 26
3.2 Backend .. 27

3.2.1 User APIs .. 28
3.2.2 Experiments API... 28
3.2.3 Resources API .. 30
3.2.4 Reports API .. 32
3.2.5 Notifications API .. 33

3.3 Deployment .. 35
4 Portal processes and information flows .. 36

4.1 Authentication & authorisation ... 36
4.2 Calibrating underlying infrastructure components .. 36

4.2.1 Delegating the vertical application components... 37
4.2.2 Creating an experiment request .. 38
4.2.3 Authorising an experiment request .. 43

4.3 Presenting data generated at the testbeds .. 45
4.3.1 5G-EPICENTRE backend experiment report generation .. 46
4.3.2 5G-EPICENTRE frontend visualization components .. 46

5 Usage ... 50
5.1 Usage examples .. 50

5.1.1 Delegating vertical application components to the testbed operator .. 50
5.1.2 Scheduling an experiment ... 52
5.1.3 Experiment deployment .. 59
5.1.4 Experiment execution.. 60

5.2 Deployment and execution of the project Use Cases .. 61
6 Conclusions .. 65
References ... 66
Annex I : Portal API documentation .. 67

User APIs .. 67
Experiments API .. 68
Resources API .. 74
Reports API .. 81
Notifications API .. 82

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

List of Figures

Figure 1: 5G-EPICENTRE Front-end components in the overall 5G-EPICENTRE architecture (D1.4). 21

Figure 2: High-level architecture of the 5G-EPICENTRE Portal.. 22

Figure 3: Northbound Configuration Dashboard mock-up for Portal integration – Selecting an applicable value
(1/2) ... 24

Figure 4: Northbound Configuration Dashboard mock-up for Portal integration – Selecting an applicable value
(2/2) ... 24

Figure 5: Northbound Configuration Dashboard mock-up for Portal integration – Notes tab 25

Figure 6: Options of interaction between vertical applications and Network Applications (Image retrieved from
[1], licenced under CC BY 4.0). .. 37

Figure 7: 5G-EPICENTRE Upstream Information Flow orchestration .. 45

Figure 8: Example of gauge chart visualization components (performance within ‘Acceptable’ range, on the left;
and ‘Optimal’ performance case, on the right) ... 47

Figure 9: Example of a line chart visualization component... 48

Figure 10: Example of a boxplot visualization component ... 48

Figure 11: Heatmap visualization component... 49

Figure 12: Map visualization component .. 49

Figure 13: 5G-EPICENTRE Portal – Login Screen.. 50

Figure 14: Main Dashboard page (for an Experimenter) .. 51

Figure 15: Resources page ... 51

Figure 16: Resource delegate page – prior to any user interaction .. 52

Figure 17: Resource delegate page – confirmation dialogue .. 52

Figure 18: Resources page, with new delegation order visible ... 52

Figure 19: Experiments page ... 53

Figure 20: Experiment Composer - Scenario page .. 54

Figure 21: Experiment Composer – Experiment Information landing page .. 54

Figure 22: Experiment Composer – adding a Helm chart to the experiment descriptor 55

Figure 23: Experiment Composer – adding a Network Application to the experiment descriptor 55

Figure 24: Experiment Composer – Opening configuration properties .. 56

Figure 25: Experiment Composer – Unchecking “Block the origin IP upon detection of a malicious flow (Default)”
option .. 56

Figure 26: Experiment Composer – Selecting microservices to monitor .. 57

Figure 27: Experiment Composer – Selecting traffic simulation conditions ... 57

Figure 28: Experiment Composer – Clicking on the “Next step” button ... 58

Figure 29: Experiment Composer – Final experiment review and confirmation .. 58

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

Figure 30: Experiments page – Displaying key information about the ordered experiment execution 59

Figure 31: Experiments page (testbed owner view) – Displaying key information about the ordered experiment
execution ... 59

Figure 32: Experiments page (testbed owner view) – Displaying key information about the ordered experiment
execution ... 60

Figure 33: Experiments page (testbed owner view) – Displaying key information about the ordered experiment
execution ... 60

Figure 34: Experiments page – Displaying key information about the ordered experiment execution 61

Figure 35: 5G-EPICENTRE Experiments insights page 1/2 (QoS & Slicing specific dashboard) 62

Figure 36: 5G-EPICENTRE Experiments insights page 2/2 (D2.7 Network Application dashboard integration
shown) ... 62

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Tasks Descriptions .. 14

Table 2: Amendments made to address each reviewers’ comments ... 16

Table 3: 5G-EPICENTRE Portal adherence to stakeholders’ and platform requirements 17

Table 4: Characterization of traffic simulation parameters/conditions per traffic profile, defined for each of the
testbeds ... 40

Table 5: Experiment descriptor used as payload in the POST HTTP request for creating and queueing a new
experiment execution in the Experiment Coordinator ... 41

Table 6: Example request JSON for the Experiment Coordinator’s “/experiment/run” API................................. 43

Table 7: Plans for the deployment and execution of UC experiments on top of the 5G-EPICENTRE infrastructure
 ... 63

Table I: API for signing in and authenticating a user ... 67

Table II: API for registering a new user ... 67

Table III: API for retrieving all experiments from the server ... 68

Table IV: API for retrieving all the experiments from the server, that match a particular search term 68

Table V: API for retrieving an experiment by a string id ... 69

Table VI: API for creating a new experiment in the database ... 69

Table VII: API for updating an experiment in the database .. 71

Table VIII: API for removing an experiment from the database ... 73

Table IX: API for retrieving all resources from the server ... 74

Table X: API for retrieving resources from the server, that match a particular search term 75

Table XI: API for retrieving a resource by a string id ... 75

Table XII: API for retrieving all the resources from the server, that match a particular tag name 76

Table XIII: API for creating a new vertical application artefact delegation request in the database 76

Table XIV: API for updating a vertical application artefact delegation request in the database 77

Table XV: API for removing a vertical application artefact delegation request from the database 79

Table XVI: API for uploading a file to the backend temporary storage folder. ... 79

Table XVII: API for downloading a file from the backend temporary storage folder. ... 80

Table XVIII: API for deleting a file from the backend temporary storage folder. .. 81

Table XIX: API for retrieving an experiment report by a set of string ids .. 81

Table XX: API for removing an experiment report by supplying it a set of string ids.. 82

Table XXI: API for retrieving all notifications from the server ... 83

Table XXII: API for retrieving all unread notifications from the server ... 83

Table XXIII: API for retrieving all notifications from the server, that match a particular search term 84

Table XXIV: API for creating a new notification in the database. .. 84

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

Table XXV: API for marking all notifications in this user’s inbox as “read” ... 85

Table XXVI: API for marking a specified notification in this user’s inbox as ‘read’ ... 86

Table XXVII: API for flagging a notification for removal from the database. .. 86

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

1 Introduction

Within the overall vision of 5G-EPICENTRE in accelerating 5G innovations for Public Protection and Disaster Relief
(PPDR) verticals (i.e., innovators and communications technology vendors), it is important to equip target end
users1 with tools for effortless interaction with the underlying testbed environments. In such manner, the plat-
form’s front-end components abstract several system functions and technologies (e.g., Kubernetes, Karmada,
JFrog, iPerf, RabbitMQ, etc.) that are integrated into the 5G-EPICENTRE experimentation workflow and each re-
quire different sets of commands, parameterization and Application Programming Interfaces (APIs) to work. By
doing so, the front-end component facilitate interaction with the underlying systems and testbeds through a
visually rich web-based environment. Thereby, actions such as deploying experiments, delegating resources as
well as executing and retrieving experiment results over the four heterogeneous testbeds federated under 5G-
EPICENTRE are streamlined in just a few mouse clicks. In the present document, all Graphical User Interface (GUI)
components of the 5G-EPICENTRE integrated experimentation platform are described, intending to provide ex-
perimenters with means of managing experiment lifecycles, requests, and experimental conditions. The final
version of the 5G-EPICENTRE Portal is presented, which constitutes the main access point to the 5G-EPICENTRE
platform. Through the Portal the end-user can easily define experiments, monitor their execution and visualise
measurements. In addition, a specialized Northbound Configuration Dashboard (NCD) is presented for allowing
experimenters to interact with the underlying network control plane in a more natural manner, and within pre-
defined sets of values.

The current deliverable is a culmination of all Task efforts in Work Package (WP) 3, and naturally complements
and updates on the contents of prior WP deliverables D3.3 “5G EPICENTRE User Interface” and D3.1 “5G EPICEN-
TRE Northbound API”. It also takes into account the most recent project Grant Agreement (GA) amendments and
5G Public Private Partnership (5G-PPP) Software Network Working Group white paper on Network Applications
[1], which both reflect the project’s alignment to the common definition of Network Applications and their pro-
posed delivery models. Further, the deliverable is informed by the latest work carried out in WP1, namely, D1.4
“Experimentation requirements and architecture specification final version”, which elaborates on the role of the
platform front-end components within the whole 5G-EPICENTRE architectural stack; D1.2 “5G-EPICENTRE exper-
imentation scenarios final version”, which defines the various 5G experimentation scenarios that are possible
through the four federated infrastructures; and D1.6 “Experiment evaluation strategy and experimentation
plan”, which defined commonalities and nomenclature between the different project Use Cases (UCs) with rela-
tion to defining experimentation Key Performance Indicators (KPIs). Security-wise, the front-end components
described in this document adhere to the design regulation put forward in D1.5 “Security-by-design toolkit”, and
integrate with the front-end solutions described in D2.7 “Cloud-native security intermediate version”, regarding
the platform’s Network Intrusion and Detection Network Application. With respect to platform component inte-
gration aspects, the portal conforms to the integration guidelines laid out in D4.4 “5G-EPICENTRE experimenta-
tion facility preliminary version”.

In turn, this deliverable provides input to WP2 deliverables D2.4 “5G-EPICENTRE service deployment”; D2.5 “5G-
EPICENTRE Experiment execution”; and D2.6 “5G-EPICENTRE Analytics Engine”, regarding the interfacing with
their respective modules and subsystems, as well as the final technical interpretation of the 5G-EPICENTRE ar-
chitecture in D4.5 “5G-EPICENTRE experimentation facility final version”. Its contents will also be useful in the
context of WP5, particularly in the context of provisioning external (to the project) PPDR vertical application
experimenters with tutorial content and Portal usage guidelines.

1 The final target end user audience for the 5G-EPICENTRE front-end components (derived from the D3.3 “Portal actors”
Table 2, p.16) includes: a) (third-party) experimenters, who will utilize the platform for gaining easy access to experiment
definition and deployment functionalities; and b) testbed owners, who utilize the platform as a means to manage and ne-
gotiate the deployment requests from experimenters.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

The remainder of this deliverable is organised as follows: Section 2 elaborates on the mappings drawn between
the described components and functionalities and the project elicited requirements and technical component
specifications. Section 3 delivers a comprehensive technical report on the 5G-EPICENTRE Portal implementation.
Section 4 describes the processes which the front-end modules support, alongside the manner in which infor-
mation flows through the system in each case. Finally, Section 5 presents indicative usage examples, complete
with lots of visual references.

1.1 Mapping of project’s outputs

The purpose of this section is to map the undertaken 5G-EPICENTRE GA commitments regarding the descriptions,
against the project’s respective outputs and work performed in the scope of WP3.

Table 1: Adherence to 5G-EPICENTRE’s GA Tasks Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

Task 3.1: Northbound API infor-
mation models and implementa-
tions

“[…] partners involved in this Task
will determine and identify any ex-
isting API definitions (data models)
and implementations that can sat-
isfy the requirements of the se-
lected experimentation scenarios
(T1.1), proposing where applicable,
any necessary extensions”.

2.2.2 – Northbound configuration
dashboard

This Section provides insights re-
garding the functionality of the
NCD and its underlying Network
application.

It further describes how users in-
teract with the NCD by submitting
requests through its front-end GUI.
It elaborates on how users can se-
lect network properties they need
to configure, how the NCD triggers
the proper Service API calls needed
to configure the network proper-
ties, and eventually, the display of
the status of the request and feed-
back given to the user.

Task 3.1: Northbound API infor-
mation models and implementa-
tions

[…] define new data models for the
remaining necessary Northbound
APIs in accordance to the experi-
mental applications’ requirements;
[…] develop a complete implemen-
tation of each of the APIs defined
by the project partners”.

T3.2: Novelty experiment insights
visualization tools

“The purpose of this Task is the de-
velopment of appropriate experi-
ment KPI visualization tools, as well
as, the orchestration of the infor-
mation flow toward the end-us-
ers.”

4.3 – Presenting data generated at
the

This Section presents the technical
details on how experiment KPI vis-
ualization is achieved in the Portal,
including the means by which KPI
information enters, and is pro-
cessed by the Portal backend and
frontend subsystems.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

T3.2: Novelty experiment insights
visualization tools

“Hence, user interfaces will be tar-
geted that foster usability via user
experience design methods and
support tools, for the purposes of
visualization, interaction and com-
prehension of big data, toward al-
lowing the user to process infor-
mation much faster and retain it
for longer”.

4.3.2 – 5G-EPICENTRE frontend
visualization components

In this Section, the various visuali-
zation components are elaborated,
with brief description of each one,
and their pertinence to 5G-EPICEN-
TRE generated insight and objec-
tives.

5.1.4 – Experiment execution This Section provides a step-by-
step visual walkthrough on how
the visualization environment can
be accessed and utilized by experi-
menters.

T3.3: Experiment planning dash-
board

“This Task will deliver a web-based,
information-rich graphical user in-
terface (GUI)-driven portal for […]
requesting execution of experi-
ments to the 5G-EPICENTRE infra-
structure. Through this interface,
high-level administrator access will
be provided for both first party, as
well as third-party experimenters,
who will be able to define and set-
up an experiment”.

4.2– Calibrating underlying infra-
structure components

The Section presents technical de-
tails on how experiment processes
are implemented, as well as secu-
rity mechanisms to ward off
against unauthorized access.

5.1.2 – Scheduling an experiment This Section provides a step-by-
step visual walk-through on how
third-party experimenters can de-
fine and request experiment exe-
cution.

5.1.3 – Experiment deployment The Section provides a visual walk-
through on how testbed adminis-
trators can manage the deploy-
ment of requested experiments.

T3.3: Experiment planning dash-
board

“In addition, the user interface will
allow experimenters to browse ex-
isting open VNF/Network Applica-
tions packages from centralized re-
positories (T4.2) so as to select de-
sired Network Applications to be
deployed across the federated Ku-
bernetes clusters federated under
the platform”.

4.2.1 – Delegating the vertical ap-
plication components

This Section presents technical de-
tails on how vertical application
component delegation processes
are implemented within the Portal.

5.1.1 – Delegating vertical applica-
tion components to the testbed
operator

This Section provides a step-by-
step visual walk-through on how
experimenters can request delega-
tion of their vertical application ar-
tefacts onto any one of the four
5G-EPICENTRE testbeds.

T3.3: Experiment planning dash-
board

“The dashboard will further pro-
vide KPI and insights visualization
leveraging on the plugins devel-
oped in the context of T3.2”.

4.3.2 – 5G-EPICENTRE frontend
visualization components

In this Section, the various visuali-
zation components are elaborated,
with brief description of each one,
and their pertinence to 5G-EPICEN-
TRE generated insight and objec-
tives.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

1.2 Adherence to reviewers’ comments and recommendations on D3.3

In addition, efforts were spent to address comments made by the project monitors with respect to D3.3 toward
the improvement of the present document. More specifically, Table 2 below, aims at explicitly clarifying how
review report comments from the second project review have been addressed.

Table 2: Amendments made to address each reviewers’ comments

Review comment(s)
(as provided by the reviewers)

5G-EPICENTRE Adherence and Document Update
(short reply and reference to the chapter that details
the reply)

User experience must be assessed throughout all
use of the technology, and adaptations should be
made to address poor UI experience.

Section 5 provides usage examples for each of the four
indicative platform use cases presented in D1.4. Its pur-
pose is to demonstrate streamlined processes for cali-
brating the underlying infrastructures, as well as experi-
ment deployment in a few comprehensive steps.

If understood correctly, the PPDR user will request
an experiment to be run by defining the Network
Applications but actually 5G-EPICENTRE partners
must prepare the experiment before PPDR users
can run it. The reasoning for this is partly clear but
limits the impact of the project to the project exe-
cution unless a sustainable business model is
planned after the project.

The Portal enables (3rd party) experimenters to request
execution of their experiments in 4 simple steps, thereby
simplifying interaction with the testbed operators. In ad-
dition, verticals are allowed to delegate their vertical ap-
plication components to the project artefact repository,
actively opting for solutions that can be publicised to
others, or kept internally, for a private experimental run.
Deliverable D6.10 provides insight into possible business
models for remunerating such interactions.

It is understandable that users are not allowed to
modify the network infrastructure, but it is not
clear why they are not allowed to configure it
within predefined sets of values.

Integration of the Portal with the project defined verti-
cal-agnostic platform Network Applications opens up the
possibility to modify, to an extent, the underlying infra-
structure. In particular, experimenters are granted some
extent of programmability over the network control
plane, e.g., to request higher priority and guaranteed
QoS for particular flows (i.e., via the Configurator, see
Section 2.2.2), as well as control over security policies
(via the Network Intrusion and Detection integration),
KPI reporting, and network traffic simulation.

It is not clear if PPDR users can act as function de-
velopers since running a Network Application for
their experimentation might require some func-
tionalities that are not available in the testbeds
and that cannot be provided by the project part-
ners. This should be possible to maximize the im-
pact of the project but requires establishing clear
guidelines and interfaces to develop and test these
modules prior to their onboarding on the platform.

The project and its Portal adopt the ‘hybrid’ option for
interaction between the vertical application provider
and the testbed operator, thereby enabling verticals to
delegate part of, or their entire vertical application as
part of the 5G-EPICENTRE platform (i.e., hosted on the
same cluster lifecycle as the 5G-EPICENTRE platform
components), allowing them to also make them availa-
ble to others. The delegation procedure ensures that
testbed operators have full control over what compo-
nents are orchestrated on their platforms.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

2 Adherence to project specifications

In this Section, we explore how the current implementation of the 5G-EPICENTRE front end components sup-
ports project documentation with respect to requirements (Section 2.1) and architecture specifications (Section
2.2), as elaborated in the latest version of the 5G-EPICENTRE specifications (D1.4 “Experimentation requirements
and architecture specification final version”).

2.1 5G-EPICENTRE requirements adherence

The 5G-EPICENTRE Portal design has been informed by the requirements first specified in D1.3, and validated in
D1.4. We briefly discuss adherence to the project elicited requirements (including stakeholders’ and platform
requirements) in Table 3. In this Table, requirements are identified using the codes QR, FR, NFR defined in D1.3
The definition of these codes is given below:

• QR: stakeholders’ requirement

• FR: functional requirement

• NFR: non-functional requirement

Table 3: 5G-EPICENTRE Portal adherence to stakeholders’ and platform requirements

Req. Description Adherence Referring document

Sections

Stakeholders’ requirements

QR3

The platform should pro-
vide network resource re-
pository and the ability to
use.

The 5G-EPICENTRE Portal supports the ca-
pacity to use the Network Service Reposi-
tory, by supporting all of its functions and
API methods (see also D4.3 “Curated Net-
work Application image repository”).

Section 4.2.1

Section 5.1

QR4

The platform should pro-
vide VNF/Network Applica-
tions repository and the
ability to use.

The 5G-EPICENTRE Portal supports the ca-
pacity to use the Network Service Reposi-
tory, by supporting all of its functions and
API methods (see also D4.3 “Curated Net-
work Application image repository”).

Section 4.2.1

Section 5.1

QR5

The platform should pro-
vide service on-boarding /
parametrisation functional-
ity.

Through the 5G-EPICENTRE Portal, the func-
tion developer is given the means to dele-
gate their vertical application experimenta-
tion components to the most appropriate
testbed, whereby it provides also methods
for parameterising the underlying testbed
environment.

Section 4.2.2

Section 5.1.2

QR6

Friendly user interface,
guiding to perform testing.

The 5G-EPICENTRE Portal has been de-
signed following fundamental principles of
effective web design, informed by the user
requirements.

Section 5

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

QR7

Visualization of KPIs meas-
ure and automated analy-
sis.

The Portal supports different visualization
components for KPIs presentation, along-
side automated routines for generating re-
ports pertaining to specific experiment exe-
cution requests.

Section 4.3

Section 5.1.4

QR11

On-line tools for one-stop
reservation of facilities.

The 5G-EPICENTRE Portal is a web-based
system developed for requesting, and mon-
itoring execution of a 5G experiment on any
one of the four 5G-EPICENTRE federated
testbeds.

Section 2.2.1

Section 3

Section 4

Section 5

QR12

Avoid complexity and over-
dimensioning.

Following fundamental principles of effec-
tive web design, the 5G-EPICENTRE Portal
presents an intuitive user experience, ab-
stracting much of the complexity involved in
networking infrastructure configuration. It
has been designed with the purpose of ena-
bling users to order an experiment, without
possessing knowledge on virtual or physical
network infrastructure.

Section 5

QR13

Provide technical support
for network configuration
and service operation

The 5G-EPICENTRE Portal displays tooltip di-
alogue boxes, along with “Help” items to
provide basic guidelines throughout the ex-
periment journey. In addition, print docu-
mentation will be delivered to third parties
during their experimentation phase.

Section 5

QR16

Remote monitor of testbed
execution

The Portal provides means to monitor exe-
cution of an experiment in real time, in
terms of collecting and provisioning data in
rich visualisation structures.

Section 4.3

Section 5.1.4

QR20
Compliance to standards The 5G-EPICENTRE Portal supports the RFC

7519 standard [1] for URL-safe user authen-
tication.

Section 3.2.1

Section 4.1

Platform requirements

FR1 The system must allow a
user to define experiments

The 5G-EPICENTRE Portal implements func-
tionality for an experimenter to prepare an
experiment, resulting in the generation of
an experiment descriptor.

Section 4.2.2

Section 5.1.2

FR2 The system must allow a
user to define experiment-
specific KPIs

The 5G-EPICENTRE Portal supports experi-
mentation in four pre-defined PPDR 5G sce-
narios, which involve particular KPIs gener-

Section 5

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

ated at each testbed level based on the pro-
ject use cases spawning these scenarios. Us-
age of the Analytics services network appli-
cation allows experimenters to further sup-
ply the system with custom KPI calculations
(see also D1.4).

FR3 The system must support
onboarding of network
functions (NFs).

The 5G-EPICENTRE Portal implements func-
tionality to delegate vertical application
components (as Helm charts) on the speci-
fied infrastructure.

Section 4.2.1

Section 5.1

FR6 The system must support
service function chaining of
NFs into end-to-end ser-
vices (Network Applica-
tions).

The 5G-EPICENTRE Portal implements func-
tionality for accommodating the platform
network applications, as defined in D1.4.

Section 4.2.2

FR10 The system should support
remote access to the defi-
nition and monitoring of
experiments

[Direct relation to QR16] The Portal pro-
vides means for experimenters to calibrate
the underlying infrastructures towards de-
fining their experiment deployments; as
well as means to monitor execution of an
experiment in real time, in terms of collect-
ing and provisioning data in rich visualisa-
tion structures.

Section 4.2

Section 4.3

Section 5.1.4

FR11 The system should provide
a proper abstraction of the
underlying network tech-
nologies.

[Direct relation to QR12] Following funda-
mental principles of effective web design,
the 5G-EPICENTRE Portal presents an intui-
tive user experience, abstracting much of
the complexity involved in networking infra-
structure configuration. It has been de-
signed with the purpose of enabling users to
order an experiment, without possessing
knowledge on virtual or physical network
infrastructure.

Section 5

FR12 The system should expose
easy-to-consume APIs to-
ward the experimenter.

The Portal consumes APIs by other 5G-EPI-
CENTRE functional blocks, encapsulating
API calls in simple GUI operations. In addi-
tion, the Portal implements several API calls
for supporting its own internal structures.

Section 3.2

FR16 The system should expose
a requirements catalogue
for the underlying network
resources.

[Direct relation to QR3] The 5G-EPICENTRE
Portal supports the capacity to use the Net-
work Service Repository, by supporting all
of its functions and API methods (see also

Section 4.2.1

Section 5.1

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

D4.3 “Curated Network Application image
repository”).

FR17 The system should provide
a user with appropriate
network resource invento-
ries and means to config-
ure and (re)use them.

[Direct relation to QR4] The 5G-EPICENTRE
Portal supports the capacity to use the Net-
work Service Repository, by supporting all
of its functions and API methods (see also
D4.3 “Curated Network Application image
repository”).

Section 4.2.1

Section 5.1

FR18 The system should allow
experimenters to repeat
and re-parameterise exper-
iments.

The 5G-EPICENTRE Portal enables the user
to store experiments on their profile, which
can be repeated, modified, deleted or used
as templates for future experiments (e.g.,
when an application is updated).

Section 4.2.2

FR19 The system should provide
means to customise net-
work slices for Network
Application requirements
under eMBB, URLLC and
mMTC service types.

The 5G-EPICENTRE Portal implements func-
tionality for accommodating the platform
network applications, as defined in D1.4.

Section 4.2.2

FR25 The system should trans-
late analytics into visualiza-
tion formats suitable for in-
terpretation by a human
being.

The Portal supports different visualization
components for KPIs presentation, along-
side automated routines for generating re-
ports pertaining to specific experiment exe-
cution requests.

Section 4.3

Section 5.1.4

FR26 The system should support
the capability of producing
customized reports based
on users’ needs and prefer-
ences.

The Portal supports different visualization
components for KPIs presentation, along-
side automated routines for generating re-
ports pertaining to specific experiment exe-
cution requests.

Section 4.3

Section 5.1.4

FR27 The system should provide
guidance to the user in or-
der to train them on using
it.

[Direct relation to QR13] The 5G-EPICEN-
TRE Portal displays tooltip dialogue boxes,
along with “Help” items to provide basic
guidelines throughout the experiment jour-
ney.

Section 5

FR30 The system could enable
the calibration of individual
testbed components from
a singular control point.

Through the 5G-EPICENTRE Portal, experi-
menter is provisioned the means to dele-
gate their vertical application experimenta-
tion components to the most appropriate
testbed. The Portal further provides meth-
ods for parameterising the underlying
testbed environment for creating custom
experimental conditions.

Section 4.2

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

FR31 The system could support
role-based access control
(RBAC) policies.

The 5G-EPICENTRE Portal implements RBAC
by means of the user authentication and au-
thorization routines and APIs.

Section 3.2.1

Section 4.1

NFR1 The system must be se-
cure.

[Direct relation to FR31] The 5G-EPICENTRE
Portal implements RBAC by means of the
user authentication and authorization rou-
tines and APIs.

Section 3.2.1

Section 4.1

NFR3 The system must be pri-
vacy-compliant.

The 5G-EPICENTRE Portal supports compli-
ance with privacy regulations by means of
its RBAC policy, and ensures that there is
not “leak” of information related to an ex-
periment or experimenter in a way that
compromises personal data or intellectual
property.

Section 3.2.1

Section 4.1

Section 4.2

NFR4 The system must be perfor-
mant/responsive.

All actions that can be performed inside the
5G-EPICENTRE Portal have been designed to
be responsive and clearly present outcomes
of such actions in a manner expected by the
end-user, to facilitate their experience.

Section 5

NFR6 The system should be user-
friendly.

[Direct relation to QR6] The 5G-EPICENTRE
Portal has been designed following funda-
mental principles of effective web design,
informed by the user requirements.

Section 5

NFR9 The system could be docu-
mented.

The present deliverable, designated as
‘public’, provides the system documenta-
tion.

Section 5

2.2 Relation to the 5G-EPICENTRE architecture

With respect to the latest 5G-EPICENTRE architecture documentation (D1.4), the core front-end functional blocks
are depicted in Figure 1.

Figure 1: 5G-EPICENTRE Front-end components in the overall 5G-EPICENTRE architecture (D1.4).

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Málaga testbed cluster

ETCD

Karmada Controllers

Cluster
Controller

Policy
Controller

Binding
Controller

Execution
Controller

Karmada API Server
Karmada

Scheduler

Karmada Control Plane

Federation Layer

Helm Chart repo
OpenAPI

Server

Network Service Repository
5G Traffic

Simulation
Manager

Experiment
Coordinator

Analytics
Aggregator

Back-End Layer

Front-End Layer

Portal Back-end

Portal Front-end

5G-EPICENTRE Portal

Portal repo

Vertical Domain

Northbound
Configuration

Dashboard

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Aveiro testbed cluster Barcelona testbed cluster Berlin testbed cluster

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Málaga
Cluster Agent

Aveiro
Cluster Agent

Barcelona
Cluster Agent

Berlin
Cluster Agent

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

2.2.1 5G-EPICENTRE Portal

The Portal is seen as the overall solution to enable the user to carry out the four (4) indicative functional scenarios
of the 5G-EPICENTRE platform, i.e., 1) Delegating vertical application components to the testbed operator; 2)
Scheduling an experiment; 3) Experiment deployment; and 4) Experiment execution.

The Portal implements a client/server design architecture, consisting of the following applications:

• The client (frontend - not to be confused with the 5G-EPICENTRE Front-end Layer), which is a single-
page client application, which uses HTML and TypeScript, running on the end-user’s browser and provid-
ing the graphical user interface (GUI) environment for enabling interaction with the system’s controls.
Built using the Angular framework, the Portal client is a collection of Angular Components (representing
entire pages, or partial components that are embedded into others), Services and auxiliary modules,
whilst also making use of the user’s machine temporary local storage.

• The server (backend – not to be confused with the 5G-EPICENTRE Back-end Layer), is a Node.js appli-
cation that serves the requests from the frontend. It leverages several frameworks, most notably the
Express2 web application framework for robust API creation, Mongoose3 for modelling application data
and mapping to MongoDB document collections for persistent storage, and mqtt4 and jsonwebtoken5
library packages for implementing the MQTT OASIS standard messaging protocol (for asynchronous com-
munication with the 5G-EPICENTRE Back-end Layer services that use it); and JSON Web Token (JWT)
open standard for secure transmission of information between the Portal client and server.

The high-level architecture of the Portal implementation is illustrated in Figure 2. As a core software element of
this deliverable, the Portal is described in more detail in Section 3.

Figure 2: High-level architecture of the 5G-EPICENTRE Portal

2 https://expressjs.com/
3 https://mongoosejs.com/
4 https://www.npmjs.com/package/mqtt
5 https://www.npmjs.com/package/jsonwebtoken

https://expressjs.com/
https://mongoosejs.com/
https://www.npmjs.com/package/mqtt
https://www.npmjs.com/package/jsonwebtoken

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

2.2.2 Northbound configuration dashboard

The Northbound Configuration Dashboard (NCD) is a Network Application specifically designed to empower ex-
perimenters with the ability to request and configure specific Quality of Service (QoS) parameters based on the
5G QoS Indicator (5QI) standards for running their experiments. The NCD serves as a crucial tool for experiment-
ers, enabling them to ensure optimal performance, reliability, and efficiency of their experiments within the
network environment.

In 5G networks, 5QI is a parameter that is used to classify and prioritise different types of network traffic based
on their QoS requirements. It helps in defining the service level and the treatment of data packets within the
network. The 5QI value is an indicator that ranges from 1 to 255 and represents different QoS levels. A higher
5QI value generally corresponds to a higher priority or better QoS treatment for the associated traffic. The spe-
cific mapping of 5QI values to QoS characteristics, such as latency, packet loss, and throughput, is defined by the
3rd Generation Partnership Project (3GPP) standards organisation [2]. By assigning appropriate 5QI values to
different types of traffic, 5G networks can efficiently allocate network resources, prioritise critical applications,
and deliver an optimal QoS experience for various services, including voice, video, Internet of Things (IoT), and
other data applications.

The ability to request specific QoS settings through the NCD is of paramount importance for several reasons.
Firstly, experiments often have unique requirements for network performance, such as low latency, high band-
width, or minimal packet loss. By providing experimenters with the option to request specific QoS parameters,
the NCD allows them to tailor the network conditions precisely to their experiment's needs. This customisation
ensures that the experimenters can accurately replicate real-world scenarios and obtain accurate results.

Secondly, the use of the 5QI standards in the NCD brings a standardised approach to QoS management in 5G
networks. Experimenters can leverage the defined 5QI values to classify and prioritise their traffic, ensuring con-
sistent and predictable QoS treatment within the network. This standardisation promotes interoperability, sim-
plifies configuration, and enhances overall network management efficiency.

Moreover, the NCD plays a vital role in ensuring fair resource allocation and efficient network utilisation. By
enabling experimenters to request specific QoS parameters, the NCD facilitates resource allocation decisions
based on experiment priorities. It allows experimenters to optimise their resource utilisation and obtain the
necessary network conditions to conduct their experiments effectively.

Furthermore, the NCD enhances the overall user experience and satisfaction by minimising unexpected network
performance issues during experiments. Experimenters can proactively request and configure the desired QoS
parameters through the NCD, reducing the risk of encountering suboptimal network conditions that could ad-
versely impact their experiments' outcomes.

In summary, the NCD serves as a Network Application that empowers experimenters to request, via a user-
friendly interface, specific QoS settings based on the 5QI standards. By offering this capability, the NCD enables
experimenters to achieve precise control over network conditions, replicate real-world scenarios, promote
standardisation, optimise resource allocation, and ensure reliable and efficient experimentation outcomes.

Step 1: In the “5QI Request” tab, the experimenter selects from a drop-down of predefined 5QI values the ap-

propriate 5QI value for their experiment, inputs the experiment id and submits the request. The NCD contacts

the Npcf_PolicyAuthorization Service API6 to submit the request for processing. The experimenter can also view

the history of requests, 5QI values requested and associated QoS settings (Figure 3 and Figure 4).

6 https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_Poli-
cyAuthorization.yaml

https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_PolicyAuthorization.yaml
https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_PolicyAuthorization.yaml

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

Figure 3: Northbound Configuration Dashboard mock-up for Portal integration – Selecting an applicable value (1/2)

Figure 4: Northbound Configuration Dashboard mock-up for Portal integration – Selecting an applicable value (2/2)

Step 2: The experimenter can access the “Notes” tab to view the “Standardized 5QI to QoS characteristics map-

ping” to understand which 5QI value is the most appropriate for their experiments (Figure 5).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

Figure 5: Northbound Configuration Dashboard mock-up for Portal integration – Notes tab

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

3 5G-EPICENTRE Portal implementation

This Section presents the fully realised final version of the 5G-EPICENTRE Portal at M30, and provides details on
its final implementation. The 5G-EPICENTRE Portal (henceforth referred to as “The Portal”) is a distributed web-
based client/server application developed for requesting, and monitoring execution of a 5G experiment on any
one of the four 5G-EPICENTRE federated testbeds.

The project was built using several open-source and source-available technologies, including the Angular7 web
framework (v15), Node.js8 server environment (v20), and MongoDB9 database program.

3.1 Frontend

The Portal frontend was generated with Angular CLI version 15.2.5. It is written entirely in TypeScript and
HTML/CSS. It delivers the client application logic mapping onto the HTML document object model (DOM) pro-
gramming interface, thus defining all the HTML elements to be displayed (i.e., when the page is loaded onto a
browser), along with the properties and behaviours of those elements.

Like all Angular projects, the Portal frontend application is organised into a list of components, which define
application data, logic and screen visual output. Following Angular coding best practices, the Portal frontend
components are organised into pages and partials. Page components implement functionality delivered inside
an entire page, which can be navigated to using the browser address bar (or via the Angular router service mod-
ule). A Partial component, on the other hand, implements self-contained functionality that controls the look and
behaviour of a particular region of the screen (HTML DOM element), which can be embedded inside other partial
or page components (a search bar, stylised button, widget, etc.).

In addition, the Portal implements a number of Angular injectable services, which handle functionality such as
determining visibility of partial components (e.g., a loading screen whilst HTTP requests are executing), or send-
ing and retrieving data to and from the backend. Finally, additional code implements necessary models, con-
stants, validation mechanisms and Angular interceptors (i.e., injectable structures that intercept HTTP requests
and process requests and responses before they arrive at their intended destination, i.e., the frontend or the
backend side).

In addition to Angular core modules (NgModules), the frontend application imports functionality from the fol-
lowing external resources, leveraging open-source Angular NgModules:

• ApexCharts (NgApexchartsModule)10, which streamlines creation of responsive charts, diagrams, graphs,
and other information visualizations.

• Leaflet11, which provides a JavaScript library for interactive map visualizations.

3.1.1 Pages

The Portal frontend consists of the following Page components:

• Home: Landing page for signed-in users, it provides a dashboard GUI for conveying latest key information
to the user in one convenient place.

• Login: landing page for non-signed-in users, it provides a login form, alongside means to register a new
user account to gain access to Portal services as an experimenter.

7 https://angular.io/
8 https://nodejs.org/en
9 https://www.mongodb.com/
10 https://apexcharts.com/
11 https://www.npmjs.com/package/leaflet

https://angular.io/
https://nodejs.org/en
https://www.mongodb.com/
https://apexcharts.com/
https://www.npmjs.com/package/leaflet

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

• Notifications: Displays a list of all the automated notifications that the Portal has generated for this user,
alongside means to manage them (e.g., delete, mark them as “read”, or access their contents).

• Experiments: Displays a list of all the experiments that the experimenter has requested using the Portal.
In the case of testbed owner accounts, the page displays all experiments that have been requested to
be deployed on the testbed with which the account is associated with. Alongside access to each experi-
ment (see Experiment page below), this page further provides means to quickly discard, or otherwise
manage experiments (e.g., download descriptor information).

• Experiment: Displays detailed information about a requested experiment, alongside access to the ex-
periment’s descriptor file. It further includes a submission history and access to the experiment cancel-
lation, or reviewing (in case of a testbed owner account) interface.

• New Experiment: Implements a “wizard” that guides the user (experimenter) through a series of steps
on requesting a new experiment execution.

• Revise experiment: A redacted version of the New Experiment page, where the user (experimenter) can
modify information about their previously requested experiments.

• Experiment insights: Displays detailed information about an experiment execution, either in real-time
(i.e., while the experiment is still being executed, and metrics are being generated and sent to the Portal),
or for any past experiment that remains accessible through the Portal environment (i.e., the user has not
deleted the experiment page from their profile).

• Resources: Displays a list of all the vertical application artefacts (which, as specified in D1.4, are stored
within the platform in the form of Helm charts) that the experimenter has requested to delegate to
testbed owners using the Portal. In the case of testbed owner accounts, the page displays all vertical
application artefact requests. Alongside access to each artefact (see ‘Resource’ page below), this page
further provides means to quickly discard, or otherwise manage artefact requests (e.g., download the
artefact’s Helm chart). It is worth noting that, whereas experiments are addressed to each testbed owner
independently (based on PPDR scenario selection), artefact delegation requests are visible by all testbed
owner accounts, since each should verify artefact deployment in their own testbed.

• Resource: Displays detailed information about a requested vertical application deployment package (i.e.,
Helm chart), alongside access to the actual downloadable compressed file. It further includes a submis-
sion history and access to the cancellation, or reviewing (in case of a testbed owner account) interface.

• Resource delegation: Implements a ‘wizard’ that guides the user (experimenter) through a series of
steps on requesting a new vertical application delegation request. It further integrates revision function-
ality, allowing experimenters to modify information about their previously requested artefact delega-
tions.

3.2 Backend

The Portal backend is a Node.js application that implements core functionalities pertaining to Portal Tasks (such
as maintaining the database for persistence of data created by frontend users) and makes these resources avail-
able to the client side. It utilises the express framework for streamlining API implementation, alongside Cross-
Origin Resource Sharing (CORS, via the cors node.js package12) to enable otherwise restricted resources (such as
those coming from the 5G-EPICENTRE Portal Back-end Layer) to be accessed from the Portal’s domain. The
backend further implements the Portal’s authentication mechanism (see also Section 4.1) and the function to
connect to the database. Through the mongoose library, it is possible for the Portal to create and manage col-
lections (a collection in MongoDB is the entity that stores one or more data records, known as documents). It
finally implements an MQTT client for connecting to the external RabbitMQ13 message broker published to by

12 https://www.npmjs.com/package/cors
13 https://www.rabbitmq.com/

https://www.npmjs.com/package/cors
https://www.rabbitmq.com/

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

the Analytics Aggregator component (see Section 4.3.1, and deliverable D1.4), subscribing to its topic, and con-
suming messages from its queue.

Practically, the Portal backend can be interpreted as one more 5G-EPICENTRE Back-end Layer service that the
frontend client connects to, in addition to the Experiment Coordinator and Network Service Repository.

The Portal backend exposes several Representational State Transfer (REST) APIs towards the Portal frontend,
which are documented in the following Sub-sections.

3.2.1 User APIs

User APIs implement an express router with all endpoints following "/api/users". They define all APIs used to
authenticate and manage user logins and registrations. By design, the Portal does not allow multiple accounts to
be created with one email address, therefore enabling unique user search to be based on email credentials.

3.2.1.1 Login user

This API is used to authenticate a user in the Portal, using a set of stored credentials. The API documentation is
summarised in Annex I.

It first retrieves the request parameters “email” and “password” from the request body, and attempts to locate
the user, whose “email” matches the ones in the request body in the “users” collection. If such a user exists in
the database, and their password matches the one encrypted in the database, a JWT is generated for the user.

The response for this API contains a custom ‘User’ Mongoose model (a Model in Mongoose defines and stores a
JSON copy of a document), together with the signed token.

3.2.1.2 Register new user

This API is used to register a user in the Portal, using a set of provided credentials. The API documentation is
summarised in Annex I.

It first de-structures the request body, and attempts to locate a user, whose “email” matches the one in the
request body in the “users” collection. If such a user does not exist in the database, the provided password is
encrypted using a cryptographic hashing algorithm14, and a new User Model is created based on inputs from the
request body. The Model is used to create the database record (document) in the “users” collection.

The response for this API contains this User model, together with the signed token (similar to the login API,
effectively logging the user in upon successful registration).

3.2.2 Experiments API

The Experiments API implements an express router with all endpoints following "/api/experiments". It defines
all APIs used to manage experiment requests.

3.2.2.1 Get all

This API is used to retrieve all the experiments that are stored in the “experiments” collection inside the database,
and which are associated with this user. The API documentation is summarised in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the “isAdmin”
property of the signed JWT included in the request header. In case this property is set to true, a find() mongoose
query is created for retrieving a list of documents for which the “testbed” field matches the “testbed” field in the
signed JWT of the user querying for those data. If the “isAdmin” property is set to false (i.e., the requesting user

14 https://www.npmjs.com/package/bcryptjs

https://www.npmjs.com/package/bcryptjs

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

is an experimenter), a different find() mongoose query is created for retrieving a list of documents for which the
“user” field matches the “id” field in the signed JWT of the user querying for those data.

In either case, the response for this API contains a list of documents (formatted using a custom ‘Experiment’
Mongoose model) that match the find() query. If the query is not successful, the response contains an empty
array ([]).

3.2.2.2 Get by search term

This API is used to retrieve all the experiments that are stored in the “experiments” collection inside the database,
which are associated with this user, and which match a particular given search term. The API documentation is
summarized in Annex I.

The server first constructs a regular expression from the search term parameter, and makes it case-insensitive.
It then determines whether the requesting user is a testbed owner account, by checking the “isAdmin” property
of the signed JWT included in the request header. In case this property is set to true, a find() mongoose query is
created for retrieving a list of documents for which the “testbed” field matches the “testbed” field in the signed
JWT of the user querying for those data; and where the “title” field matches the pattern in the regular expression.
If the “isAdmin” property is set to false (i.e., the requesting user is an experimenter), a different find() mongoose
query is created for retrieving a list of documents for which the “user” field matches the “id” field in the signed
JWT of the user querying for those data (similarly matching the “title” parameter to the regular expression pat-
tern).

In either case, the response for this API contains a list of documents (formatted using the Experiment Mongoose
model) that match the find() query. If the query is not successful, the response contains an empty array ([]).

3.2.2.3 Get by ID

This API is used to retrieve a single experiment stored in the “experiments” collection inside the database, which
matches a particular given string identifier. The API documentation is summarised in Annex I.

The server extracts the experiment ID from the request parameters, and creates a findById() mongoose query
for retrieving a single document whose “_id” field matches the “experimentId” request parameter.

The response for this API contains a single document (formatted using the Experiment Mongoose model) that
matches the findById() query. If the query is not successful, the response contains an undefined variable.

3.2.2.4 Submit an experiment request

This API is used to submit a new experiment request to the Portal. The API documentation is summarised in
Annex I.

It first de-structures the request body, and attempts to locate whether there is already an experiment with this
name for this user in the database (querying by the experiment title). If the experiment does not exist, a new
Experiment Model is created, based on the inputs from the request body, and is assigned the user’s id from the
“id” property of the signed JWT included in the request header. The new Model is then stored as a document
into the “experiments” collection, inserting thus the new document into the database.

The response for this API contains the newly created Experiment model.

3.2.2.5 Update an experiment request

This API is used to submit a revision to an existing experiment request created using the Portal. The API docu-
mentation is summarised in Annex I.

It first de-structures the request body, and attempts to locate whether there is already an experiment with this
id in the database (querying by the experiment id). If the experiment exists, an updateOne() mongoose query is

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

created for updating the document for which the “_id” field matches the “id” field in the request body, and
setting all specified parameters to their intended new values supplied in the request body.

The response for this API contains the result of the update operation.

3.2.2.6 Remove an experiment request

This API is used to remove/delete an existing experiment request created using the Portal. The API documenta-
tion is summarized in Annex I.

It first de-structures the request body, and attempts to locate whether there is already an experiment with this
id in the database (querying by the experiment id). If the experiment exists, the backend deletes the first docu-
ment that matches the previous search criteria.

The response for this API contains the newly deleted Experiment model.

3.2.3 Resources API

The Resources API implements an express router with all endpoints following "/api/resources". They define all
APIs used to manage vertical application artefact delegation requests.

3.2.3.1 Get all

This API is used to retrieve all the vertical application artefact delegation requests that are stored in the “helm-
chart-artefacts” collection inside the database, and which are associated with this user. The API documentation
is summarised in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the “isAdmin”
property of the signed JWT included in the request header. In case this property is set to true, a blank find()
mongoose query is created for retrieving all data (since application artefact delegation requests are addressed
to all testbed owners regardless of the testbed which they administrate). If the “isAdmin” property is set to false
(i.e., the requesting user is an experimenter), a different find() mongoose query is created for retrieving a list of
documents for which the “user” field matches the “id” field in the signed JWT of the user querying for those data.

In either case, the response for this API contains a list of documents (formatted using a custom ‘HelmChart’
Mongoose model) that match the find() query. If the query is not successful, the response contains an empty
array ([]).

3.2.3.2 Get by search term

This API is used to retrieve all the vertical application artefact delegation requests that are stored in the “helm-
chart-artefacts” collection inside the database, which are associated with this user, and which match a particular
given search term. The API documentation is summarised in Annex I.

The server first constructs a regular expression from the search term parameter, and makes it case-insensitive.
It then determines whether the requesting user is a testbed owner account, by checking the “isAdmin” property
of the signed JWT included in the request header. In case this property is set to true, a find() mongoose query is
created for retrieving a list of documents for which the “title” field matches the pattern in the regular expression.
If the “isAdmin” property is set to false (i.e., the requesting user is an experimenter), a different find() mongoose
query is created for retrieving a list of documents for which the “user” field matches the “id” field in the signed
JWT of the user querying for those data, also matching the “title” parameter to the regular expression pattern.

In either case, the response for this API contains a list of documents (formatted using the HelmChart Mongoose
model) that match the find() query. If the query is not successful, the response contains an empty array ([]).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

3.2.3.3 Get by ID

This API is used to retrieve a single vertical application artefact delegation request stored in the “helmchart-
artefacts” collection inside the database, which matches a particular given string identifier. The API documenta-
tion is summarised in Annex I.

The server extracts the resource ID from the request parameters, and creates a findById() mongoose query for
retrieving a single document whose “_id” field matches the “resourceId” request parameter.

The response for this API contains a single document (formatted using the HelmChart Mongoose model) that
matches the findById() query. If the query is not successful, the response contains an undefined variable.

3.2.3.4 Get by tag name

This API is used to retrieve all the resources that are stored in the “helmchart-artefacts” collection inside the
database, which are associated with this user, and for which the user-defined “category” parameter includes
elements that match a particular given tag name. The API documentation is summarised in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the “isAdmin”
property of the signed JWT included in the request header. In case this property is set to true, a find() mongoose
query is created for retrieving a list of documents for which the “category” field contains elements that match
the given “tagName” value in the request parameters. If the “isAdmin” property is set to false (i.e., the requesting
user is an experimenter), a different find() mongoose query is created for retrieving a list of documents for which
the “user” field matches the “id” field in the signed JWT of the user querying for those data, also matching the
“category” parameter elements to the “tagName” value in the request parameters.

The response for this API contains a list of documents (formatted using the HelmChart Mongoose model) that
match the find() query. If the query is not successful, the response contains an empty array ([]).

3.2.3.5 Submit a vertical application artefact delegation request

This API is used to submit a new vertical application artefact delegation request to the Portal. The API documen-
tation is summarised in Annex I.

It first de-structures the request body, and attempts to locate whether there is already a vertical application
artefact with this name for this user in the database (querying by the vertical application artefact “title”). If the
resource does not exist, a new HelmChart Model is created, based on the inputs from the request body, and is
assigned the user’s id from the “id” property of the signed JWT included in the request header. The new Model
is then stored as a document into the “helmchart-artefacts” collection, inserting thus the new document into
the database.

The response for this API contains the newly created HelmChart model.

3.2.3.6 Update a resource request

This API is used to submit a revision to an existing vertical application artefact delegation request created using
the Portal. The API documentation is summarised in Annex I.

It first de-structures the request body, and attempts to locate whether there is already an existing vertical appli-
cation artefact delegation request with this id in the database (querying by the “id” parameter in the request
body). If the vertical application artefact delegation request exists, an updateOne() mongoose query is created
for updating the document for which the “_id” field matches the “id” field in the request body, and setting all
specified parameters to their intended new values supplied in the request body.

The response for this API contains the result of the update operation.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

3.2.3.7 Remove a resource request

This API is used to remove/delete an existing vertical application artefact delegation request created using the
Portal. The API documentation is summarised in Annex I.

It first de-structures the request body, and attempts to locate whether there is already a resource with this id in
the database (querying by the “id” parameter in the request body). If the vertical application artefact delegation
request exists, the backend deletes the first document that matches the previous search criteria.

The response for this API contains the result of the delete operation.

3.2.3.8 Upload temporary chart package

This API is used to upload a file to a temporary storage in the Portal backend (/uploads folder). The API docu-
mentation is summarised in Annex I.

The server retrieves the file object, and checks the filename extension to validate it as a helm chart (only allowing
file extensions like .zip, .tgz and .gz). It then creates the local path string where the file will be moved, and pro-
ceeds to send the file from the temporary path to the newly created path within the /uploads folder.

The response for this API contains the full path to the /uploads folder, where the file is temporarily stored.

3.2.3.9 Download temporary chart package

This API is used to download a file from the temporary storage in the Portal backend (/uploads folder). The API
documentation is summarised in Annex I.

The server retrieves the filename from the request parameters and re-creates the local path string where the
file is located. It then proceeds to transfer the file at the given path as an attachment to the response.

3.2.3.10 Delete temporary chart package

This API is used to delete a file from the temporary storage in the Portal backend (/uploads folder). The API
documentation is summarised in Annex I.

The server retrieves the filename from the request parameters and re-creates the local path string where the
file is located. It then proceeds to asynchronously remove the file at the given path.

The response for this API contains the full path to the /uploads folder, where the file was temporarily stored.

3.2.4 Reports API

Implements an express router with all endpoints following "/api/ reports". It defines all APIs used to manage
experiment reports created automatically whenever metrics are sent to the Portal by the Aggregator Back-end
Layer component.

3.2.4.1 Get by ID

This API is used to retrieve a single experiment report stored in the “experiment-reports” collection inside the
database, which matches a potential set of given string identifiers. The API documentation is summarised in
Annex I.

The server extracts the IDs from the request parameters, and creates a findOne() mongoose query for retrieving
a single document whose “experiment_id” field matches the “experimentId” request parameter, and (poten-
tially) the “execution_id” field matches the “executionId” request parameter.

The response for this API contains a single document (formatted using a custom ‘ExperimentReport’ Mongoose
model) that matches the findOne() query. If the query is not successful, the response contains an undefined
variable.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

3.2.4.2 Delete report

This API is used to remove/delete an existing experiment report from the “experiment-reports” collection inside
the database. The API documentation is summarised in Annex I.

The server extracts the IDs from the request parameters, and creates a deleteOne() mongoose query for remov-
ing a single document whose “experiment_id” field matches the “experimentId” request parameter, and (poten-
tially) the “execution_id” field matches the “executionId” request parameter.

The response for this API contains the result of the delete operation.

3.2.5 Notifications API

Implements an express router with all endpoints following "/api/notifications". It defines all APIs used to man-
age Portal notifications.

3.2.5.1 Get all

This API is used to retrieve all the notifications addressed to this user, that are stored in the ‘notifications’ col-
lection inside the database. The API documentation is summarized in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the “isAdmin”
property of the signed JWT included in the request header. In case this property is set to true, a find() mongoose
query is created for retrieving a list of documents for which the 'testbed' field either matches the 'testbed' field
in the signed JWT of the user querying for those data, or is set to ‘None’ (for vertical application artefact delega-
tion requests). In addition, the query checks whether the notification has been marked for deletion by the
testbed owner (“admin_remove” parameter must be false).

If the “isAdmin” property is set to false (i.e., the requesting user is an experimenter), a different find() mongoose
query is created for retrieving a list of documents for which either the 'user' field matches the 'id' field in the
signed JWT of the user querying for those data, or the ‘correspondent’ field matches the ‘username’ field in the
JWT. In addition, the query checks whether the notification has been marked for deletion by the experimenter
(“origin_remove” parameter must be false).

In either case, the response for this API contains a list of documents (formatted using the Notification Mongoose
model) that match the find() query. If the query is not successful, the response contains an empty array ([]).

3.2.5.2 Get all unread

This API is used to retrieve all the unread notifications addressed to this user, and which are stored in the ‘noti-
fications’ collection inside the database. The API documentation is summarized in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the ‘isAdmin’
property of the signed JWT included in the request header. In case this property is set to true, a find() mongoose
query is created for retrieving a list of documents for which the 'testbed' field either matches the 'testbed' field
in the signed JWT of the user querying for those data, or is set to ‘None’ (for vertical application artefact delega-
tion requests). In addition, the query checks whether the notification has been marked for deletion by the
testbed owner (“admin_remove” parameter must be false), and also, whether the ‘admin_read’ field (denoting
whether the testbed owner has read the contents of the notification, or has marked them as ‘read’) is set to
false.

If the ‘isAdmin’ property is set to false (i.e., the requesting user is an experimenter), a different find() mongoose
query is created for retrieving a list of documents for which either the 'user' field matches the 'id' field in the
signed JWT of the user querying for those data (or the ‘correspondent’ field matches the ‘username’ field in the
JWT). In addition, the query checks whether the notification has been marked for deletion by the experimenter

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 34

(“origin_remove” parameter must be false), and also, whether the ‘origin_read’ field (denoting whether the ex-
perimenter has read the contents of the notification, or has marked them as ‘read’) is set to false.

In either case, the response for this API contains a list of documents (formatted using the Notification Mongoose
model) that match the find() query. If the query is not successful, the response contains an empty array ([]).

3.2.5.3 Get by search term

This API is used to retrieve all the notifications addressed to this user, that are stored in the ‘notifications’ col-
lection inside the database, and which match a particular given search term. The API documentation is summa-
rized in Annex I.

The server first constructs a regular expression from the search term parameter, and makes it case-insensitive.
It then determines whether the requesting user is a testbed owner account, by checking the ‘isAdmin’ property
of the signed JWT included in the request header. In case this property is set to true, a find() mongoose query is
created for retrieving a list of documents for which the 'testbed' field either matches the 'testbed' field in the
signed JWT of the user querying for those data, or is set to ‘None’ (for vertical application artefact delegation
requests). In addition, the ‘text’ field should match the pattern in the regular expression, and the notification
should not have been marked for deletion by the testbed owner (“admin_remove” parameter must be false).

If the ‘isAdmin’ property is set to false (i.e., the requesting user is an experimenter), a different find() mongoose
query is created for retrieving a list of documents for which the 'user' field matches the 'id' field in the signed
JWT of the user querying for those data (or the ‘correspondent’ field matches the ‘username’ field in the JWT),
and similarly matching the ‘text’ parameter to the regular expression pattern. In addition, the notification should
not have been marked for deletion by the experimenter (“origin_remove” parameter must be false).

In either case, the response for this API contains a list of documents (formatted using the Notification Mongoose
model) that match the find() query. If the query is not successful, the response contains an empty array ([]).

3.2.5.4 Send notification

This API is used to create a new notification in the database, making it available to the correspondents that
should be alerted to it. The API documentation is summarized in Annex I.

It creates a new Notification Model based on the inputs from the request body, and assigns it the user’s “id” and
“username” properties of the signed JWT included in the request header. The new Model is then stored as a
document into the “notifications” collection, inserting thus the new document into the database.

The response for this API contains the newly created Notification model.

3.2.5.5 Update all notifications

This API is used to mark all notifications addressed to this user as “read”, from their point of view. The API doc-
umentation is summarised in Annex I.

The server first determines whether the requesting user is a testbed owner account, by checking the “isAdmin”
property of the signed JWT included in the request header. In case this property is set to true, an updateMany()
mongoose query is created for updating all the documents for which the “testbed” field matches the “testbed”
field in the signed JWT of the user querying for those data, by setting their “admin_read” value to true. If the
“isAdmin” property is set to false (i.e., the requesting user is an experimenter), a different updateMany() mon-
goose query is created for updating all the documents for which either the “user” field matches the “id” field in
the signed JWT of the user querying for those data, or the “correspondent” field matches the “username” field
in the JWT. In this case, the updated documents will have their “origin_read” value set to true.

In either case, the response for this API contains a JSON Object that indicates (among other info) the number of
modified documents in the database.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 35

3.2.5.6 Update notification

This API is used to mark a particular notification accessed by this user as “read”, from their point of view. The
API documentation is summarised in Annex I.

The server first determines whether the notification exists, by constructing a findOne() mongoose query for re-
trieving a single document for which the “_id” field matches the “id” field of the notification inside the request
body. If the notification exists, a check is made for whether the requesting user is a testbed owner account, by
checking the “isAdmin” property of the signed JWT included in the request header. In case this property is set to
true, an updateOne() mongoose query is created for updating the document for which the “_id” field matches
the “id” field in the request body, and setting its “admin_read” value to true. If the “isAdmin” property is set to
false (i.e., the requesting user is an experimenter), a different updateOne() mongoose query is created for up-
dating the document, which will have its “origin_read” value set to true.

In either case, the response for this API contains a JSON Object that indicates (among other info) the result of
the update operation in the database.

3.2.5.7 Mark for removal/Remove a notification

This API is used to remove/delete a notification created using the Portal. The action will result in the omission of
this notification from all GET operations that this user will request in the future. For a notification to be com-
pletely removed from the database, both correspondents (testbed owner and experimenter) must have marked
the same notification for permanent removal. The API documentation is summarized in Annex I.

The server first determines whether the notification exists, by constructing a findOne() mongoose query for re-
trieving a single document for which the “_id” field matches the “id” field of the notification inside the request
body. If the notification exists, a check is made for whether the requesting user is a testbed owner account, by
checking the “isAdmin” property of the signed JWT included in the request header. In case this property is set to
true, an updateOne() mongoose query is created for updating the document for which the “_id” field matches
the “id” field in the request body, and setting its “admin_remove” value to true. If the “isAdmin” property is set
to false (i.e., the requesting user is an experimenter), a different updateOne() mongoose query is created for
updating the document, which will have its “origin_remove” value set to true.

If following the operation, both “admin_remove” and “origin_remove” values are set to true, the backend issues
a deleteOne() query that deletes the document with the specified “_id” parameter. Depending on the final op-
eration, the response for this API contains the result of that operation.

3.3 Deployment

Both Portal applications (frontend and backend) can be found in the 5G-EPICENTRE GitLab source code reposi-
tory platform (at https://gitlab.5gepicentre.eu/kapostol/5gepicentre-portal.git), alongside comprehensive in-
structions for installing both applications in a production environment.

In accordance with the specifications of the deployment architectural view presented in D1.4, both Portal appli-
cations have been deployed on the UMA platform.

https://gitlab.5gepicentre.eu/kapostol/5gepicentre-portal.git

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 36

4 Portal processes and information flows

In this Section, the basic principles and workflows of the Portal will be discussed with respect to its supported
functions and platform downstream/upstream information flows (see also D4.4 and D4.5). Specifically, the fol-
lowing Sub-sections will discuss how the Portal implements and ensures processes of authentication and author-
isation as part of the holistic security considerations (see also D2.7), as well as how it supports integration with
other components of the 5G-EPICENTRE architectural stack for setting up and calibrating underlying infrastruc-
ture components (downstream flow); along with presenting data generated at the infrastructures to the end
user (upstream flow). For the latter case, the platform’s visualisation components relating to the work carried
out in T3.2 will also be individually elaborated.

4.1 Authentication & authorisation

Security mechanisms are in place at the Portal to enforce access control, including features for single sign-on,
credential authentication and assessment of APIs requests. Specifically, the Portal backend implements the JWT
standard to securely create and exchange data between the two Portal applications (front-end and back-end,
see Section 3). Password encryption is further employed to store user account passwords as hashed passwords
rather than plain text (implemented by means of the bcrypt function [3]). Finally, RBAC is enforced through the
assignment of distinct roles to system users, and restricting specific platform functionalities (such as propagating
an experiment descriptor to the Experiment Coordinator module at the Back-end Layer) only to those roles (i.e.,
testbed owners) that should have access to them.

The Portal is meant to be used by users that identify themselves as experimenters, i.e., they provide their vertical
application components to the platform for the purpose of running a 5G experiment. Each new user is able to
register a new account (see also Section 3.2.1.2) to access platform functionalities, such as requesting the dele-
gation of vertical application components, or the execution of an experiment. The platform further supports
privileged user accounts (testbed owners, or admins), which grant additional rights to their users, such as access
to the platform external communication functions.

Successfully signing up a new account with the Portal, or signing in using the login API (see also Section 3.2.1.1)
invokes the platform’s authentication routine, which (if the user’s identity is verified) will return a signed JWT
containing the user’s information with a 30-day expiry date. Every other function in the Portal is then subject to
the authorisation routine, which dictates that each request requires an HTTP authorisation request header to be
used, so that the user sends their access token to both authenticate them with the backend, and determine their
access rights to invoke the requested function (see examples in Sections 3.2.2, 3.2.3, and 3.2.3.8). The token is
further used to create and (locally) store a User Model at the frontend client-side storage, where its access rights
are verified to display page content (i.e., notifications pulled from the server), as well as granting access rights to
frontend functions (i.e., experimenters being able to request execution of a new experiment, whereas testbed
owners are able to review and authorise such requests).

It is important to note here that the Portal cannot be used to create privileged accounts via its registration API;
instead, they are created directly by the 5G-EPICENTRE platform administrators through a special seeding API
provisioned to them by the Portal developer (not part of the publicly available documentation). Therefore, ad-
ministrator privileges are ensured to be outside the reach of third-party experimenter accounts, and RBAC is
thus enforced.

4.2 Calibrating underlying infrastructure components

One of the core responsibilities of the Portal is to expose rich and comprehensive user controls to manage how
the underlying 5G-EPICENTRE testbed infrastructures shall execute a vertical experiment. Within the overall se-
curity architecture of the Portal, such controls are exposed to experimenter accounts, to customise every aspect

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 37

of the experiment environment. However, it is the testbed owner that authorises the experiment execution, and
the deployment of third-party software on their testbeds’ Kubernetes cluster environment.

4.2.1 Delegating the vertical application components

As specified in D1.4, with respect to its Network Application approach, 5G-EPICENTRE adopts the ‘Hybrid’ option
of interaction between the testbed operator and the experimenter (see also [1], and its upcoming v2.0), since in
complex PPDR scenarios, often part of the vertical application should be delegated to (and subsequently man-
aged by) the testbed owner/telco operator (for instance, parts of the application needing to be deployed on the
edge). This requires the experimenter to delegate part (or parts) of the vertical application to the testbed owner,
so that they work in tandem with the platform’s Network Applications (see Figure 6).

Figure 6: Options of interaction between vertical applications and Network Applications (Image retrieved from [1], licenced
under CC BY 4.0).

The Portal supports a GUI workflow for quick and easy vertical application component delegation in the form of
Helm chart packages. An experimenter can initiate the procedure by uploading a valid Helm chart package, and
providing some metadata for search optimization purposes. A package is temporarily stored on the server
backend side, where it is meant to remain until it is either i) deleted by an administrator, or the requesting user;
or ii) it is irrevocably accepted or rejected by the testbed owner. In case of acceptance, the package is uploaded
onto the Network Service Repository (see D4.3), and becomes “part” of the platform (under the Hybrid option
of interaction) for as long as the experimenter/testbed owner allow it to. The chart package is no longer down-
loadable after it has been delegated to the Repository.

One thing to note here is that all vertical application package delegation requests are forwarded to all testbed
owner accounts, so that each can decide whether it will be deployable on top of their own testbed. Any package
accepted by a testbed owner account immediately renders that package deployable on their own testbed (only),
regardless of the decision made by other testbeds. Thereby, packages could be deployed across infrastructures,
provided that the owners of those infrastructures have accepted the delegation request.

It is important to also note that, as is the case with all Portal functions, experimenters have limited access rights
to actually place a Helm chart inside the Repository themselves -–only testbed owners retain that authority. This
reinforces security of the system, as potentially harmful files can be identified early on and dealt with, without
entering the Back-end Layer components. In addition, the whole process of delegating and re-delegating appli-
cation packages is encapsulated into a single page, streamlining the user experience. A usability evaluation study
with indicative end-users will be carried out in the context of T4.5, and will be reported in D4.7 “Integration,
Verification and Testing Report final version”, due in M34.

https://creativecommons.org/licenses/by/4.0/

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 38

4.2.2 Creating an experiment request

Experiment creation involves an experimenter invoking the “wizard” (new experiment page) and following
through the process in four simple steps (screens):

• Scenario selection: This screen prompts the user to categorise their vertical application under one of the
four PPDR experimentation scenarios, as defined in D1.2 “5G-EPICENTRE experimentation scenarios final
version”, i.e.:

o 5G for video & throughput optimisation, mapped onto the strengths and features provided by
the Aveiro testbed, operated by 5G-EPICENTRE partner ALB.

o 5G in drone management environments, mapped onto the strengths and features provided by
the Berlin testbed, operated by 5G-EPICENTRE partner HHI.

o 5G slicing and QoS control and management, mapped onto the strengths and features provided
by the Málaga testbed, operated by 5G-EPICENTRE partner UMA.

o Latency management and re-instantiation procedures in 5G, mapped onto the strengths and
features provided by the Barcelona testbed, operated by 5G-EPICENTRE partner CTTC.

Scenario selection is a mandatory and irreversible step (once the experiment is requested), as it maps
the vertical application experiment execution request to a (one or more) testbed owner(s), who will need
to review and authorise that request. It further determines the look and feel of the eventual visualisation
environment during the actual execution, since each scenario promotes specific Key Performance Indi-
cator (KPI) calculations that are of particular interest to that scenario, based on the identified common-
alities of the project UCs (which provided the blueprints for the aforementioned scenarios), and the
agreed upon coordinated and standardised experimentation strategy elaborated in D1.6 “Experiment
evaluation strategy and experimentation plan”.15

• Experiment information form: This screen allows the experimenter to provide information on the ex-
periment (i.e., a title and description), alongside scheduling information – when the experiment is de-
sired be deployed. To ensure resource availability, scheduling allows experimenters to designate a time
window (by specifying a start and end date for the experiment), in which the Experiment Coordinator’s
internal Scheduler module should query the testbed for resources availability. If the Coordinator is una-
ble to schedule the experiment between the start date and the end date, it will return an error message
and terminate the experiment.

• Experiment artefacts selection: In this screen, the experimenter specifies all the artefacts that facilitate
the deployment of the vertical application under the specifically desired test conditions, predicating the
creation of all necessary Kubernetes objects in the designated testbed cluster. There are two types of
deployment artefacts to choose from:

o Vertical application artefact(s): They are the vertical application components that are delegated
to the testbed during the experiment execution, following the “Hybrid” option for interaction
between the vertical and operator (see also D1.4, or the 2022 5G-PPP Software Network Work-
ing Group White paper on “Network Applications: Opening up 5G and beyond networks” [1]).
They represent vertical application deployment Helm charts that have been previously uploaded
onto the Network Service Repository (“the Repository”), starting with a request by the experi-
menter (see also Section 4.2.1). Selection of (at least) one such artefact is mandatory – an ex-
periment cannot be executed if the vertical application is not specified. The list of available Helm
charts in the Repository, as well as the contents of the Helm Charts’ Chart.yaml files, are inte-
grated via an external repository Angular service, which issues requests to the Repository’s

15 For instance, video & throughput scenarios prioritize KPI visualizations related with live video contribution from disaster
sites; drone management scenarios prioritize KPIs related to control and operation of drones and other unmanned vehicles;
QoS and Slicing scenarios prioritize quality indicators and the demonstration of quality even in challenging network condi-
tions; and Instantiation and latency scenarios prioritize KPI visualization related to deployment metrics and latencies.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 39

OpenAPI Server proxy, in accordance with the documentation in D4.3 “Curated Network Appli-
cation image repository”.

o Platform and Project Use Case Network Application artefact(s): These are the Network Appli-
cations, network and application functions (NFs/AFs) offered by the 5G-EPICENTRE Consortium
to PPDR experimenters. Thereby, third-party experimenters can request the deployment of an
instance of an offered application (or use it, if already deployed at the testbed) if they are inter-
ested in experimenting with the solution itself, or with their own application. Indicative exam-
ples of such software include the three vertical-agnostic (“platform”) Network Applications de-
scribed in D1.4, for exerting control over the underlying network control plane’s functions,
testbed entities and (security) policies. Through this list of available Network Applications, NFs
and AFs (see also D4.2 “Network functions implementation”), developers can easily and effort-
lessly chain their application to a variety of pre-deployed services offered to them, as well as
configure the network to fit their needs during the experiment execution: they can prioritise
traffic flows and/or guarantee QoS (Configurator Network Application, see also Section 2.2.2);
detect and react to outside malicious interference (Network Intrusion Detection Network Appli-
cation, see also D2.7 “Cloud-native security intermediate version”); and obtain custom visual re-
ports of experimenter-specific KPIs directly on the platform Portal (Analytics Services Network
Application16, to be reported in D2.6 “5G-EPICENTRE Analytics Engine”, M36). Each Network Ap-
plication creates additional, optional parameters in the experiment descriptor, declaring speci-
fication for deploying additional Helm charts (inside the Network Service Repository) alongside
the vertical application one. Platform Network Applications are non-mandatory – the experi-
menter may opt not to include them in her experimentation environment.

Finally, this screen enables experimenters to indirectly interact with the 5G Traffic Simulation Manager
(“the Traffic Simulator”, see also D1.4), by selecting a pre-determined traffic profile to launch the exper-
iment with. Traffic profiles are an easy way for experimenters to quickly establish the test simulation
conditions under which the network and vertical application execution will be stressed, abstracting the
majority of the underlying iPerf17 framework programmability options – a particularly useful feature for
experimenters with little to no knowledge of the iPerf tool. The profiles are defined as follows:

o Light traffic: A single iPerf client/server probe pair is initiated, with pre-determined options that
aim at simulating typical traffic alongside traffic generated by the vertical application.

o Crowded network: A single iPerf client/server probe pair is initiated, with pre-determined op-
tions for simulating increased traffic. The pair generates more requests to be transferred across
the network, thus creating more realistic conditions for a majority of PPDR events.

o Disaster: A single iPerf client/server probe pair is initiated, with pre-determined options that aim
at simulating overloaded network conditions. This profile was created to emulate network con-
ditions at the onset of a major catastrophic incident, and is aimed at testing vertical application
behaviour in extreme conditions.

At present, the pre-determined options agreed for each profile per testbed, are presented in Table 4.

• Confirmation: This screen presents a comprehensive summary of the requested experiment, as dictated
by the experimenter’s inputs in the prior screens. It also enables the experimenter to review the exper-
iment descriptor (see Table 5 for more details). From this screen, the experimenter invokes the “Submit
experiment” API, as detailed in Section 3.2.2.4.

16 It is worth noting that the Analytics Engine components are by default instantiated in the Kubernetes cluster at any par-
ticular testbed, and is therefore not deployed at the request of the vertical. The Vertical can only subscribe and pre-configure
the KPI calculation using the Analytic Services Network Application API.
17 https://iperf.fr/

https://iperf.fr/

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 40

Table 4: Characterization of traffic simulation parameters/conditions per traffic profile, defined for each of the testbeds

Testbed Traffic Simulation parameter Light Traffic Crowded network Disaster

UMA

Signal strength -65 dBm -80 dBm -95 dBm

Background traffic (% of the available
bandwidth at the application level)

10% 80% 50%

Downlink (DL) Modulation Adaptive Adaptive Adaptive

Uplink (UL) Modulation 16 QAM 16 QAM 16 QAM

MAC re-transmissions 3 3 5

ALB

Signal strength -65 dBm -80 dBm -95 dBm

Background traffic (% of the available
bandwidth at the application level)

10% 80% 50%

Downlink (DL) Modulation Adaptive to
256 QAM

Adaptive to
256 QAM

Adaptive to
256 QAM

Uplink (UL) Modulation Adaptive to
64 QAM

Adaptive to
64 QAM

Adaptive to
64 QAM

MAC re-transmissions 8 8 8

HHI

Signal strength -55 dBm -70 dBm -75 dBm

Background traffic (% of the available
bandwidth at the application level)

10% 80% 50%

Downlink (DL) Modulation Adaptive Adaptive Adaptive

Uplink (UL) Modulation Adaptive max.
64 QAM

Adaptive max.
64 QAM

Adaptive max.
64 QAM

MAC re-transmissions 5 5 5

CTTC

Signal strength -65 dBm -80 dBm -95 dBm

Background traffic (% of the available
bandwidth at the application level)

10% 80% 50%

Downlink (DL) Modulation Adaptive Adaptive Adaptive

Uplink (UL) Modulation 16 QAM 16 QAM 16 QAM

MAC re-transmissions 3 3 5

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 41

With the level of abstraction employed, alongside the sleek design of the Portal’s GUI, the process of experiment
requesting can be streamlined to a matter of minutes, thus greatly alleviating the risk of third parties disengaging
midway through, due to overt complexity of the platform. A usability evaluation study with indicative end-users
will be carried out in the context of T4.5, and will be reported in D4.7 “Integration, Verification and Testing Report
final version”, due in M34.

Table 5: Experiment descriptor used as payload in the POST HTTP request for creating and queueing a new experiment
execution in the Experiment Coordinator

Field Type Requisitness Description

Application String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to null.

Automated Boolean REQUIRED

This value indicates whether the experiment execution
should be automatically deployed, or whether the exper-
imenter is expected to manually start the deployment.
The default value is true.

ExclusiveExecution Boolean REQUIRED

This value indicates whether the experiment execution
should take place exclusively, or whether the experiment
may be executed concurrently with other experiments on
the platform. The default value is true.

ExperimentType String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to Standard.

NSs Array REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to [].

Remote String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to null.

RemoteDescriptor String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to null.

ReservationTime
Array

<Number>
REQUIRED

This value incorporates the EPOCH timestamp (in milli-
seconds) for the desired start of the experiment (start
time), along with the EPOCH timestamp (in milliseconds)
for the last moment in time where it would be acceptable
for the experiment to start (end time).

Scenario String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to null.

Slice String REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to null.

TestCases
Array

<String>
REQUIRED

This is a pre-configured field for use within 5G-EPICENTRE
and its value should always be set to [Helm Agent].

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 42

UEs Array REQUIRED
This is an unused field within 5G-EPICENTRE and its value
should always be set to [].

Version String REQUIRED
This value indicates the version of the descriptor. The de-
fault value is “2.1.0”.

Extra Object OPTIONAL

A JSON Object holding parameters corresponding to the
iPerf process to be executed, matching the traffic pro-
file/testbed pairing:

Url [String] REQUIRED

Denotes the Unified Resource Locator where the 5G Traf-
fic Simulator Manager instance of the specified testbed is
hosted.

ServerProbes [Array<Object>] REQUIRED

Denotes server probe parameters, including origin of the
traffic (e.g., “UE”, user and experiment identifiers,
whether to publish traffic data to the Publisher module –
see D1.4 – and iPerf parameters to add to the iPerf Agent
request communication18).

ClientProbes [Array<Object>] REQUIRED

Denotes client probe parameters, including origin of the
traffic (e.g., “UE”, user and experiment identifiers,
whether to publish traffic data to the Publisher module –
see D1.4 – and iPerf parameters to add to the iPerf Agent
request communication).

Parameters Object REQUIRED

JSON Object holding experiment execution parameters:

Action [String] REQUIRED

Denotes the action that the Experiment Coordinator
should perform, i.e., “deploy”, or “delete”.

Filename [String] REQUIRED

Denotes the filename of the Helm chart in which the ver-
tical application is packaged.

Namespace [String] REQUIRED

Denotes the namespace to execute the experiment. By
default, it will be the name of the testbed matching the

18 The reader is referred to the iPerf online documentation for a comprehensive overview of the iPerf parameters in this
field (https://iperf.fr/iperf-doc.php)

https://iperf.fr/iperf-doc.php

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 43

scenario selection, i.e., “aveiro”, “berlin”, “malaga”, or
“barcelona”.

Network Application_id [String] REQUIRED

A unique identifier for the experiment. It is created auto-
matically for the experiment’s document entry into data-
base, and passed to this parameter only after the testbed
owner “accepts” the experiment (by default, its value is
“undefined”, making the descriptor invalid).

HSPF [String] REQUIRED

A pseudo-Boolean string value indicating whether the
Network Intrusion Detection Network Application is to be
deployed in tandem with the vertical application. Its
value is either “yes” or “no”.

HSPF_microservices [Array<String>] REQUIRED

An array of microservices names, retrieved from the ver-
tical application’s Chart.yaml file, and which the experi-
menter has selected to inject Network Intrusion Detec-
tion sidecars to (see also deliverable D2.7). By default, its
value is [].

4.2.3 Authorising an experiment request

Every experiment request created through the aforementioned process is stored in document format inside the
database (‘experiments’ collection), where its ‘testbed’ parameter renders it visible to testbed owner accounts
associated with that testbed (i.e., no other testbed owner accounts may have access to this particular request
document). As previously specified, due to RBAC policy, only a testbed owner account can gain access to the
experiment reviewing interface.

Reviewing an experiment resembles the review outcome of i.e., scientific manuscripts, in that the reviewer might
accept, reject, or request revisions to be made to the experiment, before it is approved. To review an experiment
request, the Portal grants the testbed owner access to an incomplete version of the experiment’s descriptor file,
a comprehensive structure that is exchanged between the Portal and the Experiment Coordinator to create and
queue a new experiment execution in one of the testbed infrastructures. Only upon submitting an acceptance
decision will the descriptor be completed (and thus made valid as payload for the Experiment Coordinator), and
the connection to the Experiment Coordinator is established, via an external coordinator Angular service, which
issues requests to the Coordinator in accordance with the API documentation in D4.5 (to be updated in D2.5
“5G-EPICENTRE experiment execution” in M34). The descriptor JSON Object used as payload in the request body
is summarised in Table 5.

An example request JSON to the Experiment Coordinator by the 5G-EPICENTRE Portal is shown in Table 6.

Table 6: Example request JSON for the Experiment Coordinator’s “/experiment/run” API.

1 {

2 “Application”: null,

3 “Automated”: true,

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 44

4 “ExclusiveExecution”: true,

5 “ExperimentType”: “Standard”,

6 “Extra”: {

7 “Url”: “http://X.X.X.X:YYYY/start”,

8 “ServerProbes”: [{

9 “origin”: “UE”,

10 “userId”: “00”,

11 “experiment_id”: “experiment00”,

12 “publish”: true,

13 “request_body”: {

14 “agent_id”: “Probe2A”,

15 “action”: “Start”,

16 “parameters”: {

17 “-s”: “”,

18 “-u”: “”,

19 “-p”: 6004

20 }

21 }

22 }],

23 “ClientProbes”: [{

24 “origin”: “UE”,

25 “userId”: “00”,

26 “experiment_id”: “experiment00”,

27 “publish”: true,

28 “request_body”: {

29 “agent_id”: “Probe1B”,

30 “action”: “Start”,

31 “parameters”: {

32 “-c”: “Probe2A”,

33 “-p”: 6004

34 “-u”: “”,

35 “-b”: “150M”,

36 “-t”: 1200

37 “-i”: 1

38 }

39 }

40 }],

41 },

42 “NSs”: [],

43 “Parameters”: {

44 “Action”: “deploy”,

45 “Filename”: “mobitrust.zip”,

46 “Namespace”: “malaga”,

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 45

47 “Network Application_id”: “undefined”,

48 “HSPF”: “yes”,

49 “HSPF_microservices”: [

50 “mt-monitor”,

51 “postgresql”

52]

53 }

54 “Remote”: null,

55 “RemoteDescriptor”: null,

56 “ReservationTime”: [1686050700000, 1686140700000],

57 “Scenario”: null,

58 “Slice”: null,

59 “TestCases”: [“Helm Agent”],

60 “UEs”: [],

61 “Version”: “2.1.0”,

62 }

4.3 Presenting data generated at the testbeds

According to the experiment execution processes which are triggered after an experiment deployment, each 5G-
EPICENTRE vertical application deployment (on any testbed) will be accompanied by generation of metrics on a
variety of experimental condition indicators, KPIs and detected anomalies. These metrics enter the 5G-EPICEN-
TRE upstream information flow by means of asynchronous messaging communication based on the MQTT pro-
tocol and a RabbitMQ message-oriented middleware. The Aggregator component, as stated in D1.4, is responsi-
ble for collecting these metrics, and hence generates and forwards messages to the RabbitMQ broker (server),
which routes each message to a specific address (queue) identified via the topic exchange routing key pattern.
The Portal backend implements an MQTT Client which connects to the broker and subscribes to the Aggregator
component’s topic exchange, thus making it able to consume messages routed to this queue. The orchestration
of this flow is illustrated in Figure 7.

Figure 7: 5G-EPICENTRE Upstream Information Flow orchestration

Vertical
Application
Component

Queue C

Testbed
Components

RabbitMQ
Message Broker

Queue B
publish

Publisher

subscribe

publish

subscribe

Infrastructure Layer (e.g., UMA) Back-end Layer (UMA)

Analytics
Engine

Analytics
Aggregator

Queue D

publish

subscribe

Other Testbeds

Queue E
5G-EPICENTRE
Portal Backend

publish

Front-end Layer

subscribe

5G-EPICENTRE
Portal Frontend

Reports API

subscribe

publish

RabbitMQ Message Broker

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 46

It is worth noting that, in accordance with the specificities characterising each 5G PPDR scenario listed in D1.2,
different metrics and KPIs are prioritized, and shown to experimenters in custom experiment report (functional
requirement FR26, see Section 2.1). A different visualization dashboard environment is therefore generated for
each experiment scenario, which can be obtained by cross-referencing the messages’ “testbed_id” payload pa-
rameter with the experiment’s “testbed” parameter. Additional visualization components (widgets) are triggered
whenever experiments involve platform Network Application deployments (e.g., the Network Intrusion Detec-
tion network application). Finally, through the Analytics services network application, experimenters can opt to
include their own KPIs in the analytics pipeline, thus generating uniform visualization structures that pertain to
their individualized needs and data.

4.3.1 5G-EPICENTRE backend experiment report generation

Experiment reports refer to Portal-readable documents stored on the database that are constructed at runtime,
whenever new messages arrive at the MQTT client. They contain the entirety of insights generated during an
experimental run, including experiment KPIs, alongside testbed-generated metrics for monitoring the experi-
ment environment under test and related anomalies.

Each message received contains a JSON payload schema which identifies the experiment for which the metrics
are generated (“experiment_id”), the testbed where the metrics originate (“testbed_id”) and the kind of metrics
and calculations that the “data” contains by means of the “type” parameter field. The information enables the
Portal to precisely “match” the message to a particular (accepted and scheduled) experiment execution request,
thus creating automatically the Experiment insights page for that experiment. The means by which the Portal
renders the messages readable at the frontend is by transforming the incoming information into an experiment
“report” mongoose document model, which is stored in the “experiment_reports” collection in the database.

Whenever a new message is received, the backend queries the “experiment_reports” collection for an existing
document for which the “experiment_id” field matches the one in the message JSON payload. In case a report is
not found, a new document is created in the collection, holding distinct data fields for experiment KPIs, 5G net-
work measured parameters (under the specified simulated traffic conditions), and detected anomalies. For every
subsequent message, the existing report is updated by adding elements to each of the aforementioned array
(depending on the payload “type”). In this manner, experiment reports can be accessed both in real-time (a
report can be visualized as soon as data enters the “experiment_reports” collection), as well as after the experi-
ment has been executed, persisting for as long as the experimenter needs it to. Using the Reports API (see Section
3.2.4), users can gain managerial control over the experiment reports generated, most importantly, being able
to access the data and trigger the Portal frontend’s data visualization components.

4.3.2 5G-EPICENTRE frontend visualization components

Below is a list of visualization components available to Portal end users. The majority of the below visualization
components are developed using the ApexCharts open-source charting library, which (apart from interactive
visualization structures) offers out-of-the-box solutions for downloading chart graphics into PNG or SVG image
data, as well as exporting measurements in Comma Separated Values (CSV) text files for external processing.

4.3.2.1 Gauge charts

A gauge chart is a data visualization component that resembles a speedometer, and is ideal for pinpointing the
value of a KPI at a given point in time. It is particularly useful for estimating the KPI’s progress against ranges of
pre-determined targets.

In the case of 5G-EPICENTRE KPI calculations, these pertain to the three types of performance defined in the
experiment strategy and plan documentation (D1.6): upgradeable (U), acceptable (A), and optimal (O). Accord-
ing to D1.6, upgradeable results are defined as those that do not meet experimenters' expectations; whereas
acceptable results are those that do. Finally, optimal results are defined as those that exceed expectations.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 47

Using gauge charts, any single KPI value at any point in time can be isolated and visualized to be compared against
set criteria for UAO classification, revealing performance insights in a user-friendly and easy-to-interpret manner.
Aggregated measurements (e.g., mean values of KPIs across all time points from statistical analysis data triggered
at KPI calculation routines of the Analytics Engine) can also be visualized in this manner. Gauge charts are also
useful in communicating data related to security measurements taken by the Network Intrusion Detection net-
work application, depicting total and malicious traffic flow detections per second (see also D2.7).

An example of a gauge chart component inside the 5G-EPICENTRE Portal frontend is presented in Figure 8.

Figure 8: Example of gauge chart visualization components (performance within ‘Acceptable’ range, on the left; and ‘Opti-
mal’ performance case, on the right)

4.3.2.2 Line charts (time-series graphs)

A line chart is a data visualization component that aims at visualizing KPI values over progressive time periods. It
is ideal to depict change of KPI values over the entire course of an experiment.

Within 5G-EPICENTRE spline line charts (i.e., lines are drawn to connect points in smooth curves) are used to
depict quantitative variation of KPIs and metrics over pre-determined time intervals (wherein the Aggregator
accumulates and publishes data coming from the testbeds). Line charts are automatically generated for every
value measurement inside the “data” Aggregator message JSON payload parameter, for which a “timestamp”
value is provided. The “unit” and “param_ID" parameters are used to combine multiple line charts together in a
single visualization widget. Line charts are also useful in communicating data related to security measurements
taken by the Network Intrusion Detection network application, e.g., for depicting flow rate of total and abnormal
traffic over time (see also D2.7).

Users are able to zoom in and out, single-out a particular time-series, remove time-series from the graph, and
view individual measurements for every time point in which the measurement was collected.

An example of a line chart component inside the 5G-EPICENTRE Portal frontend is presented in Figure 9.

4.3.2.3 Boxplots

A boxplot is a data visualization component that depicts distribution and variability, displaying multiple statistical
data measures in one single comprehensive structure. They can hence be used to compare distribution of differ-
ent data sets for one topic, and are an ideal tool for visualizing statistical analysis data.

Within 5G-EPICENTRE, such statistical analysis is carried out by the KPI calculation routines of the Analytics En-
gine, which propagates to the Portal a summary of the following statistical measures: minimum; first quartile

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 48

Figure 9: Example of a line chart visualization component

(p25); median; third quartile (p75); maximum; mean; standard deviation; 5th percentile (p05); and 95th percen-
tile (p95) values. The first five of these can be used to structure a complete boxplot visualization i.e., a box that
represents the spread of data (interquartile range), with “whiskers” extending on both sides towards the mini-
mum and maximum values of the data set, thus enabling experimenters to quickly examine the different data
sets for which statistical analysis has been carried out.

An example of a boxplot component inside the 5G-EPICENTRE Portal frontend is presented in Figure 10.

Figure 10: Example of a boxplot visualization component

4.3.2.4 Heat map chart

A heat map chart is a data visualization component that utilizes colors to represent magnitude/intensity of data
values within a dataset represented as a 2D grid cell. They are ideal for delivering an immediate visual summary
of very large datasets.

A Heat map chart is an exclusive graphical component to the dashboard generated for the Network Intrusion
Detection network application. It is used to distinguish among different number of flows (per unit of time), thus
representing flows per minute, for which the colours indicate the length of the packets (see also D2.7). An ex-
ample of heat map chart component inside the 5G-EPICENTRE Portal frontend is presented in Figure 11.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 49

Figure 11: Heatmap visualization component

4.3.2.5 Map chart

The map chart is a visualization component that displays data values over a geographical area provided by the
Leaflet library. It is ideal for pinpointing the geographical position of objects.

Within 5G-EPICENTRE, the map chart is used to pinpoint the location of User Equipment (UE), particularly in
outdoor experimentation scenarios (e.g., during drone flights). In several cases, KPI values may be accompanied
by a latitude and longitude pair (also, altitude), which can be used to mark the location of a UE during the time
when a particular KPI measurement was taken. It can be used as a visual reference point to the experiment
execution, as well as for granting insight on the impact of distance of the UE from the data center to KPIs, such
as latency and round-trip-times.

An example of a map component inside the 5G-EPICENTRE Portal frontend is presented in Figure 12.

Figure 12: Map visualization component

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 50

5 Usage

In this Section, usage of the Portal will be discussed as it pertains to its role within the four indicative functional
scenarios of the 5G-EPICENTRE platform described in D1.4 (Section 3.7 Information view): 1) Delegating vertical
application components to the testbed operator; 2) Scheduling an experiment; 3) Experiment deployment;
and 4) Experiment execution. In addition, solid plans are provided for the deployment and execution of the
project first-party experiments on top of the 5G-EPICENTRE infrastructure via the Portal.

5.1 Usage examples

5.1.1 Delegating vertical application components to the testbed operator

The following list presents a step-by-step walkthrough for an experimenter to delegate their vertical application
Helm chart packages to the testbed owners via the platform GUI.

Step 1: The user (Experimenter) visits the Portal space and is redirected to the Login Screen, where they use the
brackets (in light orange colour) to type in their email used for signing up, and password associated with their
account and clicking on the bright orange “Sign in” button. The screen offers the user an option to retrieve a lost
or forgotten password (“Forgot password?” button), command the browser to store a cookie for automatic sign-
in (“Remember me” option), as well as allowing redirection to the new user registration page, where an account
can be requested. The Login Screen can be seen in Figure 13.

Figure 13: 5G-EPICENTRE Portal – Login Screen

Step 2: Upon a successful login attempt, the Portal redirects the user to the main Dashboard page. The Dash-
board page is different for the different user roles accommodated by the Portal. After logging in, the user gains
access to several persistent UI elements, such as the following: i) the navigation pane shown on the left side of
the browser window, which enables access to the different services available to each Actor role; ii) a Search
function to rapidly find content without navigating to it; iii) a notifications icon for reviewing new items added

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 51

to the user’s notifications list (e.g., a new experiment request); and iv) the Account details, where the user can
manage their account (e.g., switch password). The Dashboard page, along with the described elements, can be
seen in Figure 14.

Figure 14: Main Dashboard page (for an Experimenter)

Step 3: A user wishing to delegate a new vertical application artefact should click on “Resources” in the naviga-
tion pane. They are then redirected to the Resources page, where there are the following UI elements: i) a search
bar, where the user can search for the experiments that have been executed; ii) a bright orange button titled
“Delegate new” (on the right); and iii) a sorting filter (on the right) (Figure 15).

Figure 15: Resources page

Step 4: After the user clicks on the “Delegate new” button, they are redirected to the Resource delegate page,
where they provide the necessary metadata (e.g., title, categories), visibility and Helm chart file (Figure 16).

Step 5: The final step requires the Experimenter to opt for an action. The Experimenter has the option to either
save their work as a Draft, cancel the entire operation, or “Submit” their delegation request, thus triggering the
ordering process (Figure 17).

If publishing the request is successful, the user is redirected to the Resources page. Otherwise, the browser will
alert on errors. In contrast to Figure 15, this time the Resources page will display the basic information about the
delegation request order (i.e., the date the user has chosen for the experiment execution, the title of the exper-
iment, the chosen testbed and the status of the order – see Figure 18).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 52

Figure 16: Resource delegate page – prior to any user interaction

Figure 17: Resource delegate page – confirmation dialogue

Figure 18: Resources page, with new delegation order visible

5.1.2 Scheduling an experiment

The following list presents a step-by-step walkthrough for an experimenter scheduling an experiment.

Step 1: Same as Step 1 from Section 5.1.

Step 2: Same as Step 2 from Section 5.1.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 53

Step 3: A user wishing to create a new experiment should click on “Experiments” in the navigation pane. They
are redirected then to the Experiments page, where there are the following UI elements: i) a search bar, where
the user can search for the experiments that have been executed; ii) a bright orange button titled “Create a new
experiment” (on the right); and iii) a sorting filter (on the right) (Figure 19).

Figure 19: Experiments page

Step 4: The user should then click on the “Create a new experiment” button, and will be redirected to the Sce-
nario page where they have to select a 5G PPDR scenario from the 4 available options that are provided by the
four testbeds:

• Video & Throughput 5G scenario

• Drone Management scenario

• QoS & Slicing scenario

• Instantiation & Latency scenario

The user selects one of the available options, such as the “QoS & Slicing scenario”, and clicks on the bright orange
“Next step” button (Figure 20).

Step 5: After the user clicks on the “Next step” button, the Experiment Composer presents the various fields
required for the definition of the request experiment descriptor in an online form document, through the Exper-
iment Information page.

On this page the user has to fill in some basic information about the experiment, such as the title of the experi-
ment, start and end date, whether the execution will be automated or supervised and a description which should
be at least 15 characters. On the right side of the screen there is also a calendar that indicates the availability of
the selected testbeds.

After the user completes all the required information, they can click on the “Next step” button. They also have
the option to go back to the previous step, and save the Experiment information page if they wish to continue
later or cancel the process (Figure 21).

Step 6: Upon pressing “Next Step”, the user is redirected to the Experiment Artefacts page. On this page the
user can add a Helm chart, pick an available 5G-EPICENTRE Network Application and set the desired traffic sim-
ulation parameters.

Step 7: Under “Add deployment artefacts” in the top yellow panel, the user clicks on the orange “Add Helm
chart” button. The user selects a Helm chart from the list that appears (mobitrust.zip in Figure 22). Then they
click on the bright orange “Add Helm chart” button.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 54

Figure 20: Experiment Composer - Scenario page

Figure 21: Experiment Composer – Experiment Information landing page

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 55

Figure 22: Experiment Composer – adding a Helm chart to the experiment descriptor

Step 8: The user has to select one of the 5G-EPICENTRE Network Applications by clicking on the orange “Add
service” button.

Step 9: A pop-up window appears on which the user selects one of the Network Applications from the list of
options that appears, by clicking on the checkbox to the left of the Network Application name (Network Intrusion
and Detection in Figure 23). The user then clicks on the bright orange “Add Portal Service” button (Figure 23).

Figure 23: Experiment Composer – adding a Network Application to the experiment descriptor

Step 10: The user is redirected back to the Experiment Artefacts page. There they click on the small orange
“expand” icon (in the Network Intrusion and Detection card in Figure 24) to open configuration properties.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 56

Figure 24: Experiment Composer – Opening configuration properties

Step 11: The user can uncheck the “Block the origin IP upon the detection of a malicious flow (Default)” option
to demonstrate the capacity to set up a client to interact with a RabbitMQ message broker for handling traffic in
custom service (Figure 25).

Figure 25: Experiment Composer – Unchecking “Block the origin IP upon detection of a malicious flow (Default)” option

Step 12: The user clicks on the bright orange “Sidecar management” button (Figure 25). In the dialog that appears
the user selects the microservices they want to inject sidecars to. They can click on the checkboxes next to each

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 57

microservice name. Alternatively, they can “Select all” or “Deselect all”. They must click on the bright orange
“Confirm” button for the selection to be stored (Figure 26).

Figure 26: Experiment Composer – Selecting microservices to monitor

Step 13: The last step on the Experiment Artefacts page is to select the desired traffic simulation conditions.
Under “Traffic simulation” the user clicks on the “+Add traffic” button.

Step 14: In the dialog box the user can select one of the three available options (light, crowded or disaster) and
then clicks on the bright orange “Select profile” button (Figure 27).

Figure 27: Experiment Composer – Selecting traffic simulation conditions

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 58

Step 15: After the user has provided all the necessary information in the experiment descriptor, they click on the
“Next step” button to proceed (Figure 28).

Figure 28: Experiment Composer – Clicking on the “Next step” button

Step 16: The step requires the Experimenter to review the generated request experiment descriptor. The Exper-
imenter has the option to either revert to a previous step, save their work as a Draft, or cancel the entire opera-
tion. On the other hand, they may opt to “Publish” their experiment descriptor, thus triggering the ordering
process (Figure 29).

Figure 29: Experiment Composer – Final experiment review and confirmation

If publishing the experiment descriptor is successful, the user is redirected to the Experiments page (Figure 19).

Otherwise, the browser will alert on errors. The Experiments page will display the basic information about the

experiment order (i.e., the date the user has chosen for the experiment execution, the title of the experiment,

the chosen testbed and the status of the order).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 59

Figure 30: Experiments page – Displaying key information about the ordered experiment execution

5.1.3 Experiment deployment

The below list presents a step-by-step walkthrough for a testbed owner approving deployment of an experiment.

Step 1: The user (testbed owner) visits the Portal space and is redirected to the Login Screen, where they use
the brackets (in light orange colour) to type in their email used for signing up, and password associated with their
account and clicking on the bright orange “Sign in” button.

Step 2: Upon a successful login attempt, the Portal redirects the user to the main Dashboard page, which should
notify on the new experiment request (Figure 31).

Figure 31: Experiments page (testbed owner view) – Displaying key information about the ordered experiment execution

Step 3: The user should then navigate to the “Experiment requests” tab in the sidebar and observe the newly
added experiment (see Figure 32).

Step 4: By clicking on the experiment Title (the green link inside the experiment card in Figure 32, which for the
particular example reads ‘MobiTrust’), the user will be redirected to the experiment’s page (see Figure 33).

Step 5: The user can click on the descriptor.json button to download and view the descriptor in a text editor.
Then, clicking on the bright orange “Review” button opens the reviewing dialogue.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 60

Figure 32: Experiments page (testbed owner view) – Displaying key information about the ordered experiment execution

Figure 33: Experiments page (testbed owner view) – Displaying key information about the ordered experiment execution

Step 6: The user is now able to select a status (“Accept”, “Accept with Revisions”, “Reject”) from the dropdown
menu. Comments can be input on the respective field. Clicking on the bright orange “Submit” button will finalize
the experiment (Figure 34). After the final step, the Portal should send the experiment descriptor to the Experi-
ment Coordinator. As soon as the Coordinator responds with an execution id (indicating that the experiment has
been received and queued for execution), the Portal marks the experiment’s record as ‘executable’, which allows
visiting the experiment’s Insights page.

5.1.4 Experiment execution

Usage of the Portal in this scenario implicates that the start date and time for the experiment to be executed
have been reached, and that the Experiment Coordinator has successfully deployed all vertical and network ap-
plication microservices on the testbed Kubernetes cluster. The user can navigate to the experiment’s Insights
page, either through a direct button on the experiment’s record, or via the Experiment’s page itself.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 61

Figure 34: Experiments page – Displaying key information about the ordered experiment execution

In accordance to the provisions of Section 4.3, the experiment report is constructed from the values stored inside
the mongoose document modelled after the ‘Experiment Report’ schema (see Section 4.3.1). The user can inter-
act with the various visualization components (see Section 4.3.2), export data in image or CSV file format (useful
for generating print documentation of experiment results’ insights), or delete a no longer valuable report (which
removes the report also from the Mongoose database, according to the Reports API documentation – see Section
3.2.4). Figure 35 and Figure 36 feature indicative examples of an experiment’s insights page, showcasing various
visualization components together.

5.2 Deployment and execution of the project Use Cases

In this Section, we elaborate on the plans for the deployment and execution of the first-party experiments on
top of the 5G-EPICENTRE infrastructure. It delivers on a concrete framework for potentially extending the func-
tionality and capabilities of the platform through the UC partners’ revised plans for exposing services to third-
parties (whereby a UC might decouple one or more of its “building blocks” into re-usable Network, or Application
Functions and Network Applications – the latter as specified in [1]). In such cases, the (sub-)service should be
packed in its own Helm chart, exposed via the Network Service Repository, so that it can be chained (i.e., within
the UC-owner’s own vertical system, or with a generic vertical system envisioned by a third-party). These are
expected to become accessible through the 5G-EPICENTRE Portal as deployed services, that are available on the
pre-specified testbeds where each UC is deployed. Each shall offer a “how-to” instruction set, that should be
available to the 3rd party experimenter via the Portal.

These exposing features will be accommodated in the Portal via the “Platform Network Application” chaining
approach described in Section 4.2.2 (“Experiment artefacts selection”), and demonstrated in Section 5.1.2 (via
the “Add service” button workflow, see steps 8-12) for the Network Intrusion and Detection service on offer.
Hence, it is important to identify UCs with such potential platform extensions, to anticipate and accommodate
the UI extensions needed in the Portal (i.e., APIs being exposed to external parties, so that they can use the
service alongside their own vertical system/application, and thus, prepare, within the context of integration in
WP4, the built-in Portal UIs for each one).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 62

Figure 35: 5G-EPICENTRE Experiments insights page 1/2 (QoS & Slicing specific dashboard)

Figure 36: 5G-EPICENTRE Experiments insights page 2/2 (D2.7 Network Application dashboard integration shown)

These initial plans were collected by all UC-owners and organized into the contents of Table 7. D4.2 shall report
on the final catalogue of Network Applications, NFs and AFs that will be available for external experimentation.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 63

Table 7: Plans for the deployment and execution of UC experiments on top of the 5G-EPICENTRE infrastructure

Use Case (UC) No Status of the deployment and plans for supporting execution of third-party software

UC1

Will the vertical system be packed into one or more Helm charts: Yes.

Has the application been deployed and tested: UC1 has been successfully deployed and
tested on UMA and ALB platforms.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: Select UC1 vertical system services will be made available for third
parties experimentation on the UMA and ALB platforms.

UC2

Will the vertical system be packed into one or more Helm charts: Yes.

Has the application been deployed and tested: UC2 has been deployed and tested with
collaborating testbeds. All experimentation data has been shared with the Consortium,
whereas a set of basic results were obtained during the first party experimentation phase.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: UC2 plans for Open-Source Contributions, contribution of Application
Functions (available for third-party experimentation, but with some constrains), and an
Experimentation monitoring & troubleshooting framework. This will allow the visualisa-
tion of formatted data, enabling troubleshooting in the early stages of integration, and
facilitating the proper tracing of experiments.

UC3

Will the vertical system be packed into one or more Helm charts: Yes.

Has the application been deployed and tested: UC3 is successfully tested and deployed
on the HHI testbed. Moreover, synergy has been established between UC3 and UC7, re-
garding deployment and testing of the UC3 vertical system on top of UC7’s hardware com-
ponents (see also UC7 information, below).

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: The UC3 vertical system can be decomposed, and shall offer the 5G-
EPICENTRE platform repository one service usable and chainable by third-parties, which
forwards the HHI Drone (UE available at HHI testbed) video feed securely. This will offer
an out-of-the-box streaming solution to PPDR experimenter, who can then stack up their
software on top of it (e.g., a machine learning service, etc.).

UC4

Will the vertical system be packed into one or more Helm charts: Yes.

Has the application been deployed and tested: UC4 has been deployed and tested with
collaborating testbeds.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: The UC4 vertical system cannot be decomposed. However, ONE will
support direct integration with external services brought by third parties.

UC5 Will the vertical system be packed into one or more Helm charts: Yes

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 64

Has the application been deployed and tested: The UC has been deployed, tested and
validated in both the ALB and UMA testbeds.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: RZ provides an all-in-one service, where both cloud service and verti-
cal application are provisioned. No plans to expose services to third parties are foreseen.

UC6

Will the vertical system be packed into one or more Helm charts: Yes

Has the application been deployed and tested: Deployment is has been tested and vali-
dated at the HHI Testbed.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: OPTO can provide parts of its dockerized vertical system (i.e., Analyzer
and Proxy), which could be used with a zeroMQ network socket and a Protocol Buffers
(protobuf)-formatted definition of variables.

UC7

Will the vertical system be packed into one or more Helm charts: Yes

Has the application been deployed and tested: Deployment of the UC7 vertical system
on both the UMA and HHI testbeds.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: While no plans are in place for exposing UC7 software blocks to exter-
nal parties, YBQ will support third-party experimentation by offering access to their hard-
ware platform (custom smart glasses) via the collaborating testbeds. This UE could then
host Android-based vertical applications developed by third-parties, that can chain to the
platform components via service APIs (see D1.4 and [1]). The practice has already been
adopted by other partners inside the Consortium (ADS, HHI). A comprehensive user and
technical manual are being prepared for this.

UC8

Will the vertical system be packed into one or more Helm charts: This UC is demonstra-
tive of the capacity of the platform and testbed architectures to host Virtual Machine (VM)
based vertical systems Thereby, this UC will not be packaged in a Helm chart.

Has the application been deployed and tested: The UC8 application has been successfully
deployed on both the UMA and CTTC testbeds. Testing has been carried out in both
testbeds. Metrics that demonstrate achievement of KPIs can be obtained only where a
standalone Windows-based machine is used.

Will the UC expose any services to third-parties, as a deployed component on the pre-
specified testbeds: Because the vertical system in this UC follows a different architectural
deployment, and is not planned to be packaged and accessed via the Helm chart driven
Network Service Repository, the UC will not expose services to third-parties.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 65

6 Conclusions

In the present document, the entirety of work undergone in the 30 months’ duration of 5G-EPICENTRE WP3 was
presented. The outputs of this WP deliver on the architectural components of the Front-end Layer, which encap-
sulates all user-facing applications and systems designed to facilitate a more natural and streamlined interaction
between the experimenters and the testbed operators, regarding 5G PPDR experiment execution. All supported
functionalities, interfaces and intercommunications with other 5G-EPICENTRE architectural components were
elaborated, demystifying how, in the context of the project’s third-party experimentation activities (WP5), the
external to the project experimenters are meant to utilize the 5G-EPICENTRE platform for their own experiments.

A key aspect in the design of the presented tools and systems refers to their usability and user-friendliness,
toward minimizing the risk of users disengaging during experiment on-boarding processes. Several simplifica-
tions were introduced since the original designs and mock-ups were presented (D3.3, referring to the original
architectural model in D1.3), which are informed by the most recent shifts of the project toward embracing the
new Network Application concept and delivery model [1], as well as the project’s own amended experimental
procedures, definitions and platform updates (D1.4). Therefore, in this document, we have presented both plat-
form (i.e., Portal) and Network Application components (i.e., Configurator), which both intend to support the
fundamental objective of Network Applications as “a middleware layer to simplify the implementation and de-
ployment of vertical systems on a large scale” [1].

With delivery of this report, activities in WP3 are concluded, in that core functions and module processes will no
longer be added to the software that accompanies this report. Any further development activity (e.g., feature
and API refinements, code optimization, decorative elements, etc.) shall henceforth be carried out in the context
of Task 4.4 “End-to-end platform integration activities”, toward lending support to third parties in their deploy-
ment of innovative PPDR based solutions for first responders, occurring at Task 5.2 “PPDR third parties innova-
tion”, and reported in D5.3 “Final evaluation report”.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 66

References

[1] Sayadi, B., Chang, C.-Y., Tranoris, C., Iordache, M., Katsaros, K., Vilalta, R., et al. (2022). Network Applications:
Opening up 5G and beyond networks [White paper]. Zenodo. https://doi.org/10.5281/zenodo.7123919

[2] ETSI. (2022). System architecture for the 5G System (5GS). ETSI Technical Specification 123 501 V17.5.0 (2022-
7). Retrieved from https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123501v1
70500p.pdf

[3] Provos, N., & Mazieres, D. (1999). A future-adaptable password scheme. In USENIX Annual Technical Confer-
ence, FREENIX Track (Vol. 1999, pp. 81-91). Retrieved from https://www.usenix.org/conference/1999-usenix-
annual-technical-conference/future-adaptable-password-scheme

https://doi.org/10.5281/zenodo.7123919
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123501v170500p.pdf
https://www.etsi.org/deliver/etsi_ts/123500_123599/123501/17.05.00_60/ts_123501v170500p.pdf
https://www.usenix.org/conference/1999-usenix-annual-technical-conference/future-adaptable-password-scheme
https://www.usenix.org/conference/1999-usenix-annual-technical-conference/future-adaptable-password-scheme

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 67

Annex I: Portal API documentation

User APIs

Login user

This API is used to authenticate a user in the Portal, using a set of stored credentials.

Table I: API for signing in and authenticating a user

Login user

Method POST

Endpoint /api/users/login

Request Headers None

Request Body

email [String] REQUIRED

The user’s email address.

password [String] REQUIRED

The user’s password.

Response

200 The authentication was successful. The response will contain the User Model of
the user that was authenticated, together with the newly signed token.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: “Username or password is not valid!”.

Register new user

This API is used to register a user in the Portal, using a set of provided credentials.

Table II: API for registering a new user

Register new user

Method POST

Endpoint /api/users/register

Request Headers None

Request Body

name [String] REQUIRED

The user’s name, to be displayed throughout the Portal to address the user.

email [String] REQUIRED

The user’s email.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 68

password [String] REQUIRED

The user’s password.

confirmPassword [String] REQUIRED

The user’s password confirmation. It should match the value of ‘password’.

Response

200 The registration was successful. The response will contain the User Model of the
user that was authenticated, together with the newly signed token.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: “A user with this email address already exists in our da-
tabase!”.

Experiments API

Get all

This API is used to retrieve all the experiments that are stored in the “experiments” collection inside the database,
and which are associated with this user.

Table III: API for retrieving all experiments from the server

Get all

Method GET

Endpoint /api/experiments

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Experiment Model
documents matching the query, or an empty list if no matches are found.

Get by search term

This API is used to retrieve all the experiments that are stored in the “experiments” collection inside the database,
which are associated with this user, and which match a particular given search term.

Table IV: API for retrieving all the experiments from the server, that match a particular search term

Get by search term

Method GET

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 69

Endpoint /api/experiments/search/:searchTerm

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Experiment Model
documents matching the query, or an empty list if no matches are found.

Get by ID

This API is used to retrieve a single experiment stored in the “experiments” collection inside the database, which
matches a particular given string identifier.

Table V: API for retrieving an experiment by a string id

Get by ID

Method GET

Endpoint /api/experiments/:experimentId

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain the Experiment Model match-
ing the query, or an undefined variable, if there is no match.

Submit an experiment request

This API is used to submit a new experiment request to the Portal.

Table VI: API for creating a new experiment in the database

Submit an experiment request

Method POST

Endpoint /api/experiments/create

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 70

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

id [String] OPTIONAL

Identifier of the experiment. This is generated automatically upon document creation
in the database, and, therefore, is not used in this request (although the field is re-
quired in the interface that is used to construct the request body).

title [String] REQUIRED

Title of the experiment, as specified by the user during the experiment creation process
(see Section 4.2).

owner [String] REQUIRED

The (user)name of the account that created the experiment.

filename [String] REQUIRED

The filename of the vertical application’s Helm chart in the Network Service Repository,
as selected by the user during the experiment creation process (see Section 4.2).

Network Applications [Array<String>] OPTIONAL

A list of names of the 5G-EPICENTRE platform Network Applications (see deliverables
D1.4 and D4.2 for more details) to deploy alongside the vertical application’s Helm
chart, as specified by the user during the experiment creation process (see Section 4.2).

traffic [String] OPTIONAL

The name of the traffic simulation profile for the requested experiment, as specified
by the user during the experiment creation process (see Section 4.2).

start_date_ts [Number] REQUIRED

Timestamp of the designated start point for trying experiment execution, as specified
by the user during the experiment creation process (see Section 4.2). This value effec-
tively tells the Experiment Coordinator when to start querying for resources to deploy
the experiment.

end_date_ts [Number] REQUIRED

Timestamp of the designated end point for trying experiment execution, as specified
by the user during the experiment creation process (see Section 4.2). This value effec-
tively tells the Experiment Coordinator when to stop the querying for resources to de-
ploy the experiment.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 71

automated [Boolean] REQUIRED

A Boolean flag indicating whether the experiment will be automatically deployed by
the Experiment Coordinator, as specified by the user during the experiment creation
process (see Section 4.2).

description [String] REQUIRED

Textual description of the experiment, as specified by the user during the experiment
creation process (see Section 4.2).

testbed [String] REQUIRED

Denotes which testbed is assigned the experiment based on the PPDR scenario that
the user specified during the experiment creation process (see Section 4.2). Allowed
values are “Aveiro”, “Berlin”, “Malaga”, and “Barcelona”.

status [String] REQUIRED

Denotes the status of the experiment. Allowed values are “Draft”, “Submitted”, “Ac-
cepted”, “Rejected”, “Cancelled”, and “Accepted with revisions”. It is created automat-
ically by the Portal frontend during the experiment creation process (see Section 4.2).

history [Array<Object>] OPTIONAL

A list of JSON Objects describing the record of submissions for this experiment. Each
record stores the date in which it was created, the last date in which it was updated,
textual comments associated with the review of the testbed owner for the particular
submission, and the status of the submission following the review. It is created auto-
matically by the Portal frontend during the experiment creation process (see Section
4.2).

descriptor [Object] REQUIRED

A JSON Object matching the experiment descriptor, which is the payload sent to the
Experiment Coordinator when finalising the deployment request. It is created auto-
matically by the Portal frontend during the experiment creation process (see Section
4.2).

Response

200 The experiment creation was successful. The response will contain the Experiment
Model of the experiment that was created.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Experiment exists!’.

Update an experiment request

This API is used to submit a revision to an existing experiment request created using the Portal.

Table VII: API for updating an experiment in the database

Update an experiment request

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 72

Method POST

Endpoint /api/experiments/revise

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

id [String] REQUIRED

Identifier of the experiment.

filename [String] OPTIONAL

The filename of the vertical application’s Helm chart in the Network Service Repository,
as selected by the user during the experiment creation process (see Section 4.2).

Network Application [Array<String>] OPTIONAL

A list of names of the 5G-EPICENTRE platform Network Applications (see deliverables
D1.4 and D4.2 for more details) to deploy alongside the vertical application’s Helm
chart, as specified by the user during the experiment creation process (see Section 4.2).

traffic [String] OPTIONAL

The name of the traffic simulation profile for the requested experiment, as specified
by the user during the experiment creation process (see Section 4.2).

start_date [Number] OPTIONAL

Timestamp of the designated start point for trying experiment execution, as specified
by the user during the experiment creation process (see Section 4.2). This value effec-
tively tells the Experiment Coordinator when to start querying for resources to deploy
the experiment.

end_date [Number] OPTIONAL

Timestamp of the designated end point for trying experiment execution, as specified
by the user during the experiment creation process (see Section 4.2). This value effec-
tively tells the Experiment Coordinator when to stop the querying for resources to de-
ploy the experiment.

automated [Boolean] OPTIONAL

A Boolean flag indicating whether the experiment will be automatically deployed by
the Experiment Coordinator, as specified by the user during the experiment creation
process (see Section 4.2).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 73

description [String] OPTIONAL

Textual description of the experiment, as specified by the user during the experiment
creation process (see Section 4.2).

status [String] REQUIRED

Denotes the status of the experiment. Allowed values are “Draft”, “Submitted”, “Ac-
cepted”, “Rejected”, “Cancelled”, and “Accepted with revisions”. It is created automat-
ically by the Portal frontend during the experiment creation process (see Section 4.2).

lastRecord [Object] REQUIRED

A JSON Object describing the last record of submissions for this experiment. Each rec-
ord stores textual comments associated with the review of the testbed owner for the
particular submission, and the status of the submission following the review. Upon be-
ing stored in the database, it automatically creates parameters for the date in which it
was created, and the last date in which it was updated. It is created automatically by
the Portal frontend during the experiment creation process (see Section 4.2).

pushRecord [Boolean] REQUIRED

A Boolean value that indicates whether the ‘lastRecord’ Object should be pushed to
the array of submissions kept in the experiment’s ‘history’ parameter (if true), or
whether to update the values of the existing last record in that parameter (if false).

descriptor [Object] OPTIONAL

A JSON Object matching the experiment descriptor, which is the payload sent to the
Experiment Coordinator when finalizing the deployment request. It is created auto-
matically by the Portal frontend during the experiment creation process (see Section
4.2).

Response

200 The experiment update was successful. The response will contain a JSON Object
summarising the results of the mongoose updateOne() function.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Experiment does not exist!’.

Remove an experiment request

This API is used to remove/delete an existing experiment request created using the Portal.

Table VIII: API for removing an experiment from the database

Remove an experiment request

Method POST

Endpoint /api/experiments/remove

Request Headers access_token [String] REQUIRED

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 74

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body
id [String] REQUIRED

Identifier of the experiment.

Response

200 The experiment deletion was successful. The response will contain the Experiment
Model of the experiment that was deleted.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Experiment does not exist!’.

Resources API

Get all

This API is used to retrieve all the vertical application artefact delegation requests that are stored in the “helm-
chart-artefacts” collection inside the database, and which are associated with this user.

Table IX: API for retrieving all resources from the server

Get all

Method GET

Endpoint /api/resources

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Resource Model doc-
uments matching the query, or an empty list if no matches are found.

Get by search term

This API is used to retrieve all the vertical application artefact delegation requests that are stored in the “helm-
chart-artefacts” collection inside the database, which are associated with this user, and which match a particular
given search term.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 75

Table X: API for retrieving resources from the server, that match a particular search term

Get by search term

Method GET

Endpoint /api/resources/search/:searchTerm

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Resource Model doc-
uments matching the query, or an empty list if no matches are found.

Get by ID

This API is used to retrieve a single vertical application artefact delegation request stored in the “helmchart-
artefacts” collection inside the database, which matches a particular given string identifier.

Table XI: API for retrieving a resource by a string id

Get by ID

Method GET

Endpoint /api/resources/:resourceId

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain the Resource Model matching
the query, or an undefined variable, if there is no match.

Get by tag name

This API is used to retrieve all the resources that are stored in the “helmchart-artefacts” collection inside the
database, which are associated with this user, and for which the user-defined “category” parameter includes
elements that match a particular given tag name.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 76

Table XII: API for retrieving all the resources from the server, that match a particular tag name

Get by tag name

Method GET

Endpoint /api/resources/tag/:tagName

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Resource Model doc-
uments matching the query, or an empty list if no matches are found.

Submit a vertical application artefact delegation request

This API is used to submit a new vertical application artefact delegation request to the Portal.

Table XIII: API for creating a new vertical application artefact delegation request in the database

Submit a vertical application artefact delegation request

Method POST

Endpoint /api/resources/create

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

id [String] OPTIONAL

Identifier of the vertical application artefact delegation request. This is generated au-
tomatically upon document creation in the database, and, therefore, is not used in this
request (although the field is required in the interface that is used to construct the
request body).

title [String] REQUIRED

Title of the vertical application artefact delegation request, as specified by the user
during the resource creation process (see Section 4.2).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 77

owner [String] REQUIRED

The (user)name of the account that created the vertical application artefact delegation
request.

filename [String] REQUIRED

The filename of the vertical application’s Helm chart, as uploaded by the user during
the resource creation process (see Section 4.2).

category [Array<String>] OPTIONAL

A list of free keywords/tags that can be used to describe the vertical application arte-
fact delegation request (for search optimization purposes), as specified by the user
during the resource creation process (see Section 4.2).

status [String] REQUIRED

Denotes the status of the vertical application artefact delegation request. Allowed val-
ues are “Draft”, “Submitted”, “Accepted”, “Rejected”, “Cancelled”, and “Accepted with
revisions”. It is created automatically by the Portal frontend during the resource crea-
tion process (see Section 4.2).

history [Array<Object>] OPTIONAL

A list of JSON Objects describing the record of submissions for this vertical application
artefact delegation request. Each record stores the date in which it was created, the
last date in which it was updated, textual comments associated with the review of the
testbed owner for the particular submission, and the status of the submission following
the review. It is created automatically by the Portal frontend during the resource cre-
ation process (see Section 4.2).

public [Boolean] REQUIRED

A Boolean indicator for whether the artefact should be made public (i.e., freely and
openly accessible to others), or private (i.e., only accessible to the experimenter mak-
ing the upload, and the testbed owners). It is explicitly specified by the user during the
resource creation process (see Section 4.2).

Response

200 The vertical application artefact delegation request creation was successful. The
response will contain the HelmChart Model of the resource that was created.

400 The vertical application artefact delegation request was invalid. The response will
contain an Errors JSON Object with the following error text message: ‘Resource exists!’.

Update a resource request

This API is used to submit a revision to an existing vertical application artefact delegation request created using
the Portal.

Table XIV: API for updating a vertical application artefact delegation request in the database

Update a vertical application artefact delegation request

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 78

Method POST

Endpoint /api/resources/revise

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

id [String] REQUIRED

Identifier of the vertical application artefact delegation request.

filename [String] OPTIONAL

The filename of the vertical application’s Helm chart, as uploaded by the user during
the resource creation process (see Section 4.2).

category [Array<String>] OPTIONAL

A list of free keywords/tags that can be used to describe the vertical application arte-
fact delegation request (for search optimization purposes), as specified by the user
during the resource creation process (see Section 4.2).

testbed [Array<String>] OPTIONAL

When the response is created by a testbed owner, regarding a review of the vertical
application artefact delegation request, this parameter denotes a list of testbeds that
have validated the request, and for which the deployment of the artefact has been
verified. Each testbed owner can only push their own testbed’s value in the array,
which should contain at the most 4 values (corresponding to the four testbeds).

status [String] REQUIRED

Denotes the status of the vertical application artefact delegation request. Allowed val-
ues are “Draft”, “Submitted”, “Accepted”, “Rejected”, “Cancelled”, and “Accepted with
revisions”. It is created automatically by the Portal frontend during the resource crea-
tion process (see Section 4.2).

lastRecord [Object] REQUIRED

A JSON Object describing the last record of submissions for this vertical application
artefact delegation request. Each record stores textual comments associated with the
review of the testbed owner for the particular submission, and the status of the sub-
mission following the review. Upon being stored in the database, it automatically cre-
ates parameters for the date in which it was created, and the last date in which it was
updated. It is created automatically by the Portal frontend during the vertical applica-
tion artefact delegation process (see Section 4.2).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 79

pushRecord [Boolean] REQUIRED

A Boolean value that indicates whether the ‘lastRecord’ Object should be pushed to
the array of submissions kept in the artefact’s ‘history’ parameter (if true), or whether
to update the values of the existing last record in that parameter (if false).

Response

200 The resource update was successful. The response will contain a JSON Object sum-
marising the results of the mongoose updateOne() function.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Resource does not exist!’.

Remove a resource request

This API is used to remove/delete an existing vertical application artefact delegation request created using the
Portal.

Table XV: API for removing a vertical application artefact delegation request from the database

Remove a vertical application artefact delegation request

Method POST

Endpoint /api/resources/remove

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body
id [String] REQUIRED

Identifier of the vertical application artefact delegation request.

Response

200 The resource deletion was successful. The response will contain a JSON Object
summarising the results of the mongoose deleteOne() function.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Resource does not exist!’.

Upload temporary chart package

This API is used to upload a file to a temporary storage in the Portal backend (/uploads folder).

Table XVI: API for uploading a file to the backend temporary storage folder.

Upload temporary chart package

Method POST

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 80

Endpoint /api/resources/upload

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

payload [FormData] REQUIRED

The request payload is formatted in accordance to the XMLHttpRequest FormData in-
terface, where a new custom key (“thumbnail”) has been appended holding the file as
its value.

Response

200 The query was successful. The response will contain the full path to the /uploads
folder, wherein the file has been stored.

422 The query content is unprocessable. The response will contain an Errors JSON Ob-
ject with the following error text message: ‘Uploaded file is not a valid Helm chart’.

500 Internal server error - the operation that sends the file from the temporary path
to the path specified as its parameter has failed. The response will contain an Errors
JSON Object with the related error text message.

Download temporary chart package

This API is used to download a file from the temporary storage in the Portal backend (/uploads folder).

The server retrieves the filename from the request parameters and re-creates the local path string where the
file is located. It then proceeds to transfer the file at the given path as an attachment to the response.

Table XVII: API for downloading a file from the backend temporary storage folder.

Download temporary chart package

Method GET

Endpoint /api/resources/download/:filename

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 81

Response

200 The query was successful. The response will contain the full path to the /uploads
folder, wherein the file has been stored.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘File does not exist!’.

Delete temporary chart package

This API is used to delete a file from the temporary storage in the Portal backend (/uploads folder).

Table XVIII: API for deleting a file from the backend temporary storage folder.

Download temporary chart package

Method DELETE

Endpoint /api/resources/:filename

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response

200 The query was successful. The response will contain the full path to the /uploads
folder, wherein the file has been stored.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘File does not exist!’.

500 Internal server error. The response will contain an Errors JSON Object with the
following error text message: ‘File could not be deleted!’.

Reports API

Get by ID

This API is used to retrieve a single experiment report stored in the “experiment-reports” collection inside the
database, which matches a potential set of given string identifiers.

Table XIX: API for retrieving an experiment report by a set of string ids

Get by ID

Method GET

Endpoint /api/reports/:experimentId/:executionId

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 82

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response

200 The query was successful. The response will contain the Resource Model matching
the query, or an undefined variable, if there is no match.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Requested experiment report does not exist!’.

Delete report

This API is used to remove/delete an existing experiment report from the “experiment-reports” collection inside
the database.

Table XX: API for removing an experiment report by supplying it a set of string ids

Delete reports

Method DELETE

Endpoint /api/reports/:experimentId/:executionId

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response

200 The query was successful. The response will contain the Resource Model matching
the query, or an undefined variable, if there is no match.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Requested experiment report does not exist!!’.

Notifications API

Get all

This API is used to retrieve all the notifications addressed to this user, that are stored in the ‘notifications’ col-
lection inside the database.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 83

Table XXI: API for retrieving all notifications from the server

Get all

Method GET

Endpoint /api/notifications

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Notification Model
documents matching the query, or an empty list if no matches are found.

Get all unread

This API is used to retrieve all the unread notifications addressed to this user, and which are stored in the ‘noti-
fications’ collection inside the database.

Table XXII: API for retrieving all unread notifications from the server

Get by search term

Method GET

Endpoint /api/notifications/unread

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Notification Model
documents matching the query, or an empty list if no matches are found.

Get by search term

This API is used to retrieve all the notifications addressed to this user, that are stored in the ‘notifications’ col-
lection inside the database, and which match a particular given search term.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 84

Table XXIII: API for retrieving all notifications from the server, that match a particular search term

Get by search term

Method GET

Endpoint /api/notifications/search/:searchTerm

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a list of Notification Model
documents matching the query, or an empty list if no matches are found.

Send notification

This API is used to create a new notification in the database, making it available to the correspondents that
should be alerted to it.

Table XXIV: API for creating a new notification in the database.

Submit a notification to the server

Method POST

Endpoint /api/notifications/create

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body

id [String] OPTIONAL

Identifier of the notification. This is generated automatically upon document creation
in the database, and, therefore, is not used in this request (although the field is re-
quired in the interface that is used to construct the request body).

text [String] REQUIRED

Text of the notification. It is created automatically by the Portal frontend during the
experiment creation process (see Section 4.2).

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 85

testbed [String] REQUIRED

Denotes which testbed is assigned the experiment based on the PPDR scenario that
the user specified during the experiment creation process (see Section 4.2). Allowed
values are “Aveiro”, “Berlin”, “Malaga”, “Barcelona” and “None”. It is used to associate
the notification with every testbed owner account that manages a particular testbed
(“None” notifications are assigned to all testbed owners).

username [String] REQUIRED

The username of the account owner, whose actions have triggered the creation of the
notification. This field is automatically filled in by the Portal frontend during the exper-
iment creation process (see Section 4.2).

correspondent [String] OPTIONAL

The username of the account owner, who should be notified to the creation of the
notification. This field is automatically filled in by the Portal frontend during the exper-
iment creation process (see Section 4.2).

experimentId [String] REQUIRED

The ID of the experiment or vertical application delegation request for which this noti-
fication is created. This field is automatically filled in by the Portal frontend during the
experiment creation process (see Section 4.2).

Response
200 The notification creation was successful. The response will contain the Notification
Model of the notification that was created.

Update all notifications

This API is used to mark all notifications addressed to this user as “read”, from their point of view.

Table XXV: API for marking all notifications in this user’s inbox as “read”

Update all notifications

Method GET

Endpoint /api/notifications/update/all

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body None

Response
200 The query was successful. The response will contain a JSON Object summarising
the results of the mongoose updateMany() function.

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 86

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: “There are no notifications for this user!”.

Update notification

This API is used to mark a particular notification accessed by this user as “read”, from their point of view.

Table XXVI: API for marking a specified notification in this user’s inbox as ‘read’

Update a notification by id

Method GET

Endpoint /api/notifications/update

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a “testbed owner”) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the
Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body
id [String] OPTIONAL

Identifier of the notification.

Response

200 The query was successful. The response will contain a JSON Object summarising
the results of the mongoose updateOne() function.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: ‘Notification does not exist!’.

Mark for removal/Remove a notification

This API is used to remove/delete a notification created using the Portal. The action will result in the omission of
this notification from all GET operations that this user will request in the future. For a notification to be com-
pletely removed from the database, both correspondents (testbed owner and experimenter) must have marked
the same notification for permanent removal.

Table XXVII: API for flagging a notification for removal from the database.

Remove a notification from the server

Method POST

Endpoint /api/ notifications/remove

Request Headers

access_token [String] REQUIRED

Signed JWT for the user making the request, containing the user’s id, username, email,
administrator status (i.e., whether the user is a ‘testbed owner’) and testbed identifier
(for testbed owner accounts only). It is automatically injected to the request by the

D3.2 5G EPICENTRE Front-end components

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 87

Portal frontend’s authentication HTTP interceptor, which intercepts the request and
adds this header.

Request Body
id [String] REQUIRED

Identifier of the notification.

Response

200 The experiment deletion was successful. The response will contain the Experiment
Model of the experiment that was deleted.

400 The request was invalid. The response will contain an Errors JSON Object with the
following error text message: “Notification does not exist!”.

