

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE Network
Applications for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D4.5: 5G-EPICENTRE experimentation facility

final version

Delivery date: January 2024

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Network Appli-

cations for public proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

Ref. Ares(2024)745767 - 31/01/2024

https://www.5gepicentre.eu/

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D4.5: 5G-EPICENTRE experimentation facility final version

Work Package WP4: Platform integration and VNF development

Task(s) T4.3: Cross-testbed federation & synchronization

T4.4: End-to-end platform integration activities

Type Report

Dissemination Level Public

Due Date M30, June 30, 2023

Submission Date M31, July 31, 2023

M37, January 31, 2024 (Revision)

Document Lead Konstantinos Apostolakis (FORTH)

Manuel Requena Esteso (CTTC)

Contributors Stefania Stamou (FORTH)

Hamzeh Khalili (CTTC)

Fatemehsadat Tabatabaeimehr (CTTC)

Josep Mangues-Bafalluy (CTTC)

Pedro Tomás (ONE)

Luis Cordeiro (ONE)

André Gomes (ONE)

Jorge Marquez Ortega (UMA)

Almudena Díaz Zayas (UMA)

Apostolos Siokis (IQU)

Luigi D’Addona (IST)

Anna Maria Spagnolo (IST)

Sozos Karageorgiou (EBOS)

Daniel del Teso (NEM)

Ivan González (NEM)

Internal Review Daniel del Teso (NEM)

Pedro Tomás (ONE)

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties, and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 19/06/2023 Initial deliverable structure.
Konstantinos Apostolakis
(FORTH)

V0.2 11/07/2023 50% of deliverable content.
Konstantinos Apostolakis
(FORTH)

V0.3 14/07/2023
Assimilation of input on HSPF/Network
Intrusion & Detection platform integra-
tion details (Section 4.5.2).

Pedro Tomás (ONE)

Luis Cordeiro (ONE)

André Gomes (ONE)

V0.4 17/07/2023

Assimilation of input on Back-end (Coor-
dinator) and Infrastructure layer (5G Traf-
fic simulation) component integration de-
tails (Sections 4.2.2 and 4.3.1).

Jorge Marquez Ortega (UMA)

Almudena Díaz Zayas (UMA)

V0.5 18/07/2023

Assimilation of input on Network Service
Repository APIs (IQU, Section 4.2.1); Ana-
lytics pipeline APIs (IST, Sections 4.4.2 and
4.5.3); and Northbound Configuration
Dashboard and Configurator Network Ap-
plication (EBOS, Section 4.5.1).

Apostolos Siokis (IQU)

Anna Maria Spagnolo (IST)

Luigi D’Addona (IST)

Sozos Karageorgiou (EBOS)

V0.9 19/07/2023
Consolidation of final inputs, preparation
of internal review version.

Konstantinos Apostolakis
(FORTH)

V1.0 20/07/2023

Assimilation of input on Cross-testbed
federation & synchronization approach
(CTTC, Section 3) and Analytics pipeline
APIs (IST, Sections 4.4.2 and 4.5.3).

Manuel Requena Esteso (CTTC)

Hamzeh Khalili (CTTC)

Fatemehsadat Tabatabaeimehr
(CTTC)

Josep Mangues-Bafalluy (CTTC)

Anna Maria Spagnolo (IST)

Luigi D’Addona (IST)

V1.1 27/07/2023
1st post internal review version with sug-
gested revisions by ONE, and corrections
by UMA and CTTC.

Pedro Tomás (ONE)

Jorge Marquez Ortega (UMA)

Manuel Requena Esteso (CTTC)

V1.2 28/07/2023

2nd post internal review version by NEM,
with suggested revisions and corrections
by IST, EBOS and CTTC. Version prepara-
tion for final quality review (CTTC).

Daniel del Teso (NEM)

Ivan González (NEM)

Anna Maria Spagnolo (IST)

Sozos Karageorgiou (EBOS)

Fatemehsadat Tabatabaeimehr
(CTTC)

Manuel Requena Esteso (CTTC)

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

V2.0 30/07/2023
Final revisions after quality review, in-
cluding formatting and proof-reading - Fi-
nal version for submission.

Konstantinos Apostolakis
(FORTH)

V2.1 29/01/2024
Implemented revisions after project peri-
odic review – marked changes for internal
review.

Konstantinos Apostolakis
(FORTH)

V2.2 29/01/2024
Updated version with suggested revisions
by the appointed internal reviewers.

Daniel del Teso (NEM)

Ivan Gónzalez (NEM)

André Gomes (ONE)

V2.5 30/01/2024 Formatting and proof-reading
Konstantinos Apostolakis
(FORTH)

V3.0 31/01/2024 Final revised version for submission
Konstantinos Apostolakis
(FORTH)

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der an-
gewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL (Participation ended) Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

Hewlett-Packard Italiana Srl Italy HPE

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

List of abbreviations

Abbreviation Definition

5QI 5G QoS Indicator

AI Artificial Intelligence

API Application Programming Interface

CD Continuous Delivery

CI Continuous Integration

CPU Central Processing Unit

DevOps Development and Operations

GA Grant Agreement

HSPF Holistic Security and Privacy Framework

JSON JavaScript Object Notation

K8s Kubernetes

KPI Key Performance Indicator

MANO Management & Orchestration

MQTT Message Queuing Telemetry Transport

NCD Northbound Configuration Dashboard

NFV(I) Network Functions Virtualisation (Infrastructure)

PaaS Platform-as-a-Service

QoS Quality of Service

TI Testbed Instance

UC Use Case

UE User Equipment

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

UI User Interface

VPN Virtual Private Network

WP Work Package

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

Executive summary

The present deliverable constitutes the updated version of D4.4 “5G-EPICENTRE experimentation facility prelim-
inary version” and is the accompanying report to the integrated 5G-EPICENTRE experimentation facility, coincid-
ing with project Milestone MS7 “Platform tools and content ready for third-party user evaluation” (due in M30).
The document presents the thorough technical integration documentation produced in Task T4.4 “End-to-end
platform integration activities”, which contains the developed application programming interfaces that support
the information flows within the final version of the integrated 5G-EPICENTRE platform. It further compiles the
final, detailed report on the implementation of the ambitious Karmada cross-testbed federation framework, in-
tegrated as part of activities in Task T4.3 “Cross-testbed federation & synchronization”.

This deliverable hence presents how the constituent components of an online 5G experiment e-ordering plat-
form come together, enabling both first- (i.e., Use Case owners), and third-party experimenters to upload their
vertical application software (and make it available to the testbed administrators for the setup stage of the ex-
perimentation process), as well as book an experiment in one of the testbeds of the project, in order to execute
the experiment and/or the respective use case, and to monitor and analyse the outcomes in real-time.

In this report we review the implementation perspective of the organizational structure of this 5G-EPICENTRE
integrated system, as elaborated in D1.4 “Experimentation requirements and architecture specification final ver-
sion”. The four independent testbed facilities (each characterized by different 5G features and exposed capabil-
ities) are federated under a Karmada control plane architecture, each accommodating a K8s-based management
architecture, to orchestrate and manage deployment and operation of containerized PPDR applications. A cen-
tralized, cloud-native experimentation platform is deployed on top of this federation, enabling access to each of
the underlying testbeds’ resources. It is comprised of a centralized Back-end layer architecture), in charge of
orchestrating the commands necessary to facilitate the deployment of the vertical application under the specif-
ically desired test conditions; and a Front-end layer, responsible for exposing a Platform-to-Consumer web ap-
plication for experiment ordering. This system is thereby capable of facilitating the interactions between the two
foreseen actors of the platform, i.e., the vertical experimenters and the testbed administrators.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

Table of Contents

List of Figures ... 10
List of Tables .. 11
1 Introduction ... 12

1.1 Mapping of project’s outputs ... 13
1.2 Updates since the initial deliverable version ... 15

2 Platform integration overview .. 16
2.1 Integration environment .. 16
2.2 CI/CD process ... 16
2.3 Gitlab repository ... 18

3 Cross-testbed federation & synchronization approach .. 19
3.1 Initial approach ... 19
3.2 Developments .. 20

3.2.1 Cluster affinity plugin .. 21
3.2.2 Latency-aware plugin .. 21

3.3 Outcomes ... 22
3.4 Service deployment process in the federation .. 22

3.4.1 Accessing Karmada and the Kubernetes clusters .. 23
3.4.2 Setting up the federation .. 23
3.4.3 Deploying services through Karmada .. 24

4 Integrated 5G-EPICENTRE experimentation facility .. 26
4.1 Delegating vertical application components to the testbed operator ... 27

4.1.1 5G-EPICENTRE Portal - Network Service Repository integration .. 28
4.2 Scheduling an experiment .. 29

4.2.1 5G-EPICENTRE Portal – Network Service Repository .. 29
4.2.2 5G-EPICENTRE Portal – Experiment Coordinator .. 31
4.2.3 Experiment Coordinator – Network Service Repository ... 32
4.2.4 Experiment Coordinator – Karmada API Server .. 32

4.3 Experiment deployment ... 32
4.3.1 Experiment Coordinator – 5G Traffic Simulation Manager ... 33
4.3.2 Experiment Coordinator – Publisher ... 34
4.3.3 5G Traffic Simulation Manager - Remote iPerf Agent ... 37

4.4 Experiment monitoring during execution .. 38
4.4.1 5G-EPICENTRE Portal – Experiment Coordinator .. 39
4.4.2 Analytics Engine – Analytics Aggregator – 5G-EPICENTRE Portal.. 40

4.5 Platform Network Applications integration ... 43
4.5.1 Configurator and Network Configuration Dashboard ... 44
4.5.2 Network Intrusion & Detection ... 44
4.5.3 Analytics .. 45

5 Conclusions .. 48
References ... 49

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

List of Figures

Figure 1: The 5G-EPICENTRE CI/CD process .. 17

Figure 2: Multi-cluster K8s Federation across different 5G-EPICENTRE Testbeds Infrastructures (adapted from [1])
 ... 20

Figure 3: a) Scheduling workflow [2] b) example of propagation policy ... 21

Figure 4: Federation built by Karmada with the different Testbed clusters ... 22

Figure 5: Kubeconfig files to access the clusters ... 23

Figure 6: Member clusters appearing in the federation after kubectl get clusters. The remaining clusters
(one per 5G-EPICENTRE testbed) that appear in the list had joined the federation in the same way as those
provided as example above. .. 24

Figure 7: Sample propagation policy yaml used in UC2 .. 24

Figure 8: Sample service deployment yaml ... 25

Figure 5: 5G-EPICENTRE platform overall functional architecture component diagram. 26

Figure 6: 5G-EPICENTRE Platform-as-a-Service (PaaS) and Network Applications Layers (delegated at testbeds).
 ... 27

Figure 7: 5G-EPICENTRE component integrations supporting the “Scheduling an experiment” usage scenario . 29

Figure 8: 5G-EPICENTRE component integrations supporting the “Experiment deployment” usage scenario ... 32

Figure 9: 5G-EPICENTRE component integrations supporting the “Experiment monitoring during execution”
usage scenario ... 39

Figure 10: 5G-EPICENTRE Upstream Information Flow orchestration .. 41

Figure 11: UCx, HSPF/Network Intrusion & Detection Network Application and 5G-EPICENTRE components. .. 46

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions ... 13

Table 2: Deliverable updates since D4.4 ... 15

Table 3: CI/CD process steps ... 17

Table 4: API for uploading a file to the Repository using the specified “filename” .. 28

Table 5: API for deleting a file from the Repository specified by “filename” ... 28

Table 6: API for returning the list of filenames in the repository.. 30

Table 7: API for returning the file information and content specified by “filename” ... 30

Table 8: API for creating and queueing a new experiment execution, based on the contents of an experiment
descriptor .. 31

Table 9: API for marking the experiment for cancellation, specified by “id” .. 31

Table 10: API for starting traffic generation on a remote iPerf Agent specified by the “id” parameter inside
“request_body” ... 33

Table 11: API for terminating traffic generation on a remote iPerf Agent ... 34

Table 12: API for fetching metrics from the Publisher, using the Prometheus client ... 34

Table 13: API for adding metadata for an experiment to the Publisher ... 35

Table 14: API for removing metadata for an experiment from the Publisher .. 36

Table 15: API for executing iPerf Agent operations .. 37

Table 16: API for terminating an iPerf Agent operation .. 38

Table 17: API for retrieving the result of the last iPerf Agent operation .. 38

Table 18: API for obtaining the logs generated in the execution of an experiment specified by “id” 40

Table 19: API for obtaining the experiment descriptor for the experiment specified by “id” 40

Table 20: Asynchronous information flow exchanged between the Publisher and the Analytics Engine 41

Table 21: Asynchronous information flow exchanged between the Analytics Engine and the Analytics Aggregator
 ... 42

Table 22: Network Intrusion & Detection Network Application report message schema (left) and example (right).
 ... 44

Table 23: HSPF message fields - possible values and observations .. 45

Table 24: API for subscribing the analytics service based on the content of a KPI descriptor 46

Table 25: API for deleting the subscription to the analytics services identified by “subscription_id” 47

Table 26: API for returning the descriptor associated with “subscription_id” ... 47

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

1 Introduction

The purpose of this deliverable is two-fold, on the one hand recount the development and integration of the
project’s cross-orchestration solution over the past 12 months (Task T4.3 “Cross-testbed federation & synchro-
nization”), as well as report on the means by which integration of the 5G-EPICENTRE experimentation facility has
been achieved (Task T4.4 “End-to-end platform integration activities”). After identifying Karmada as the ideal
solution for fulfilling the requirements and responsibilities assigned to the architectural Federation layer, work
in T4.3 was spent on integrating the 5G-EPICENTRE platform with Karmada so to be able to register testbed
Kubernetes (K8s) clusters in the envisioned federation. This addresses issues with resource fragmentation, ag-
gregating all resources and offering them through a single point of access. On the other hand, work in T4.4 has
focused on identifying and documenting the interdependencies among the different 5G-EPICENTRE components
(between Months 1-12, reported in D4.1 “Integration plan and framework”); defining the individual components’
interfaces over the identified reference points of the 5G-EPICENTRE architectural framework (between Months
13-18, reported in D4.4 “5G-EPICENTRE experimentation facility preliminary version”); and identifying and refin-
ing the platform’s information flows (between Months 16-30, originally reported in D4.4 and technically elabo-
rated in the present deliverable).

This deliverable receives input from the ongoing activities across all technical Work Packages (WPs) and Tasks,
and their respective deliverables, and particularly, orchestrated into a comprehensive architectural stack de-
scribed in D1.4 “Experimentation requirements and architecture specification final version”. More specifically:

• D3.1 “5G EPICENTRE Northbound API”, which laid the groundwork for the development of a high-level
Application Programming Interface (API) simplifying access to infrastructure elements and network func-
tionalities via programmable interfaces for the various applications (what would later become the role
of the Configurator network application);

• D4.2 “Network functions implementation”, which further explores the Network Applications developed
in the 5G-EPICENTRE framework;

• D2.7 “Cloud-native security intermediate version”, where the components of the security architecture
are elaborated;

• D4.3 “Curated Network Application image repository”, which defines how the Network Applications cat-
alogue becomes accessible for the 5G-EPICENTRE architectural components;

• and finally (in tandem to this report), D3.2 “5G EPICENTRE Frontend components”, which describes the
development of the 5G-EPICENTRE frontend components, recounts how the processes for experiment-
ers to upload/ onboard their Experiments have been implemented; and delivers insight on how the up-
stream information flow, for presenting data generated at the infrastructures to the end-users, has been
orchestrated.

With respect to other deliverables in WP2 and WP4, the present report feeds into the development of key com-
ponents in the 5G-EPICENTRE architecture, i.e., the 5G-EPICENTRE Experiment Coordinator (D2.5 “5G-EPICENTRE
experiment execution”); 5G-EPICENTRE Analytics Engine (D2.6 “5G-EPICENTRE Analytics Engine”); and final ver-
sion of the security components (D2.8 “Cloud-native security final version”), all of which shall provide intricate
details of the components themselves, integrated in the means described in this present report. Finally, the de-
liverable anticipates the upcoming D4.7 document “Integration, Verification and Testing Report final version”,
where the activities regarding Task T4.5 (“Lab testing, prototyping and validation”) will be coupled to the infor-
mation in this document.

The remainder of this document is organized as follows:

• Section 2 follows up on the contents of D4.1 by establishing the microservices approach followed to
deliver on the results reported in this deliverable.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

• Section 3 describes the approach toward development of the testbeds’ synchronization layer, and the
mapping of features of the project-defined cross-testbed MANO API to the Karmada Kubernetes Man-
agement System elected for its implementation.

• Section 4 elaborates on the 5G-EPICENTRE platform component interactions, documenting all API devel-
opments and the information flows supported by the final version of the platform.

• Section 5 delivers conclusive remarks and outlook on future work.

1.1 Mapping of project’s outputs

The purpose of this section is to map 5G-EPICENTRE Grant Agreement (GA) commitments, both within the formal
Deliverable and Task description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Deliverable & Tasks Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

T4.3: Cross-testbed federation &
synchronization

“[…] define and develop a set of
common, standardized interfaces
that will intelligently combine the
underlying testbed hardware and
software components so as to ena-
ble the creation of new, virtual
components that provide en-
hanced capabilities”.

Section 3.1 – Initial approach Section 3.1 discusses how cross-
testbed federation has been con-
ceptualized within 5G-EPICENTRE,
covering the definition aspect of
the federation & synchronization
approach.

T4.3: Cross-testbed federation &
synchronization

“[…]. Key objectives of these inter-
faces are i) to allow testbeds to fed-
erate without losing control of
their individual resources; ii) ena-
ble the calibration of individual
testbed components from a singu-
lar control point; iii) allow experi-
menters to combine the available
re-sources to achieve different ex-
perimentation conditions of vary-
ing scale and diversity; and iv) en-
sure these configurations are easily
repeatable by supporting repro-
ducible experimentation condi-
tions”.

Section 3.2 – Developments Section 3.2 elaborates on the
scheduling component of the Kar-
mada architecture, elaborating on
the modes of scheduling that ena-
ble the specifically listed objectives
(i)-(iv) to be achieved.

T4.3: Cross-testbed federation &
synchronization

Section 3.3 – Outcomes Section 3.3 describes how the
cross-testbed MANO API is imple-
mented in the project.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

“The output of this Task will be a
cross-testbed MANO API […], which
will allow access to the many facil-
ities federated under 5G-EPICEN-
TRE by wrapping different aspects
of each individual testbed API un-
der a unified information model”.

T4.4: End-to-end platform integra-
tion activities

“[…]. It includes planning and reali-
sation of all the 5G-EPICENTRE
components’ integration into one
cloud-native, microservices ori-
ented platform. To this end, 5G-EP-
ICENTRE component instances will
run inside containerised environ-
ments, such as Docker/K8s, able to
tap into cloud-based support layer
services (such as databases and
middleware) that will also run as
micro services inside their own con-
tainers”.

Section 2 - Platform integration
overview

Section 2 describes the micro-
services architectural guidelines
for the development and integra-
tion of the 5G-EPICENTRE architec-
tural components. It describes the
employed CI/CD approach and
concludes by linking to the pro-
ject’s GitLab repository where the
integrated components, modules
and subsystems can be retrieved.

Section 4 – Integrated 5G-EPICEN-
TRE experimentation facility

Section 4 presents a comprehen-
sive overview of the 5G-EPICENTRE
platform integration activities, its
developed APIs, and the infor-
mation flows they support.

T4.4: End-to-end platform integra-
tion activities

“[…] tools for the continuous inte-
gration and continuous delivery of
5G-EPICENTRE will be employed in
the integration routine, enabling
the continuous delivery and de-
ployment of the system.”

Section 2.2 – CI/CD process Section 2.2 describes the Continu-
ous Integration / Continuous Deliv-
ery (CI/CD) approach followed in
the context of Task T4.4 i.e., inte-
grating code into a shared reposi-
tory at regular intervals, and sub-
sequent testing of the integrated
code in order to automatically
push changes into production.

T4.4: End-to-end platform integra-
tion activities

“[…]. Integration will hence be ad-
dressed using vertical methods in
order to have functional entities
and horizontal approaches so as to
facilitate any necessary customiza-
tion of the platform, which will iter-
atively integrate components re-
sulting from technical WPs to de-
liver incremental releases of the
5G-EPICENTRE platform.”

Section 4 – Integrated 5G-EPICEN-
TRE experimentation facility

This Section incorporates the 5G-
EPICENTRE API specification in a
homogenized format that makes
API documentation straightfor-
ward to all technical partners in
the Consortium. The Section al-
lows the technical developers to
find out how each API works, and
thus generate code (for the re-
mainder of the integration and im-
plementation Task lifecycles), as
well as test cases (in the context of
Task T4.5).

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

1.2 Updates since the initial deliverable version

The present document is the second (and final) version of deliverable D4.4. The following Table (Table 2) lists all
updates introduced in this latest version of the report, describing what material is new, or updated compared to
the previous version.

Table 2: Deliverable updates since D4.4

Document Chapter Updates since the initial deliverable version

Section 1
The Section has been updated to reflect upon the entire lifecycle of Tasks T4.3 and
T4.4. A novel Section 1.2 has been added to highlight changes of the deliverable since
its preliminary version (D4.4).

Section 2 There are no significant updates to this Section since D4.4.

Section 3
The Section has been updated to reflect the integration of the platforms in the cross-
testbed federation since D4.4.

Section 4

The Section has been updated to address the latest platform specifications, as listed
in D1.4. It delivers a similar structure of elaborating on component interdependencies
based on information flow, but has been further broken down into the actual usage
scenarios of the 5G-EPICENTRE platform in general, namely: 1) Delegating vertical ap-
plication components to the testbed operator; 2) Scheduling an experiment; 3) Ex-
periment deployment; and 4) Experiment monitoring during execution.

Section 5
Section 5 has been updated to reflect on the updates introduced in this document,
and its positioning in the project work plan timing.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

2 Platform integration overview

This section will outline the general process for the integration of individual components and services into the
overall 5G-EPICENTRE integrated platform. As mentioned, 5G-EPICENTRE follows the CI approach to integration,
enabling a multitude of developers to simultaneously work on parts of the integrated system in parallel. In this
approach, as soon as a component development cycle is complete, it is integrated into the overall system and
tested. Due to this workflow, it is important for the development team to focus on small changes and incremental
additions to component functionality; otherwise, integration will become a bottleneck in the production of the
solution.

2.1 Integration environment

5G-EPICENTRE adopts a microservices architecture, which essentially looks upon system components as a col-
lection of loosely coupled services, communicating with one another through either synchronous (i.e., Represen-
tational State Transfer – REST), or asynchronous (publish/subscribe messaging, e.g., Message Queuing Telemetry
Transport – MQTT) protocols implemented over well-defined interfaces. Adoption of this paradigm helps the 5G-
EPICENTRE integration team to deliver on the large, complex experimentation facility architecture in a coordi-
nated and rapid fashion.

Implementation of the project microservices architecture is based on a well-defined (D4.1) software lifecycle and
Development and Operations (DevOps) platform in GitLab1. GitLab incorporates a variety of features to handle
the end-to-end software development and operations workflows, most notably (and of relevance to the micro-
services architectural paradigm) the GitLab Container Registry. This extension integrates a private registry for
Docker images, which contain everything needed to run an application, including source code and dependencies.
Delivered images can then be deployed and executed as Docker containers, complete with hosting environment,
dependencies, etc., enabling developers to build, push and deploy containers using GitLab CI for the purposes of
testing an application as soon as changes are introduced to branches or tags.

For development and testing purposes, Kubernetes (K8s) is used as the staging environment, taking advantage
of GitLab’s integration with K8s. K8s is responsible for scheduling and running containerised applications over
one or more containers, while simultaneously automating container operational tasks, such as creation, starting,
organising, monitoring, and destruction. In addition, K8s can automatically restart containers after they have
crashed, managing thus horizontal scalability. K8s can run on both a local cluster or be deployed in private or
public Clouds. GitLab offers integration with K8s in multiple ways, of which the most relevant to the 5G-EPICEN-
TRE integration plan is the capacity to build and deploy software from GitLab CI/CD pipelines to a K8s cluster.

2.2 CI/CD process

As 5G-EPICENTRE follows a microservices-based approach, developers are free to implement their components
using the software stack of their choice. Developers are further responsible for upgrading the source code of the
various components incrementally, and should write the proper automated tests that verify the implementation
of a function or class inside a software module. Developers are encouraged to work on isolated, local develop-
ment machines. Hence, the integrated prototype is maintained on a separate production environment, inde-
pendent to the development environment.

The project developers will be responsible to incrementally improve and add features to the integrated 5G-EPI-
CENTRE platform prototype, by adding functionality introduced in the most recent updated versions of the indi-
vidual components in frequent integration and delivery steps, as shown in Figure 1.

1 https://about.gitlab.com/

https://about.gitlab.com/

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

Figure 1: The 5G-EPICENTRE CI/CD process

The individual steps depicted in this CI/CD process are described in Table 3.

Table 3: CI/CD process steps

Step number Activities

1

Developer creates a new feature branch: Before any new developments on an individual com-

ponent take place, it is important that the component developer obtains the latest version of

the software currently in the production environment. On the component’s GitLab repository,

a new feature branch (i.e., a clean copy of the current master initial branch) is created for the

specific component indicating a new, independent line of development for the implementa-

tion of a particular added feature that the component should provide.

2

Developer commits changes: The local development activity takes place, introducing new

code, updating older code, optimising existing code, and improving overall clarity of the source

files. All work should be carried out on an independent, local developer machine. Following

the CI/CD methodology, such changes should be committed to the branch in frequent intervals

to avoid adding complexity.

3

Automatic (test) build: Utilising the GitLab CI/CD tool, the push should trigger a pipeline, con-

figured to be executed with jobs running in separate, isolated Docker containers. A test app is

deployed, which is used to verify changes against component specifications (unit testing) and

interfacing with other components already in the production environment (integration test-

ing).

4

Unit testing: The CI/CD pipelines invoked upon a push should contain an automated unit test

job, whose purpose is to verify the code. Isolated parts of the built application are tested to

indicate any errors or bugs introduced regarding unit functionality. Automated unit testing is

performed by means of a specific unit testing framework applicable to the programming lan-

guage used. Thorough information on the test planning is presented in deliverable D4.6.

5 (optional)
Developer commits unit test fixes: If the tests in the previous step should fail, the pipeline

should fail as well. The developer should review the job logs and pinpoint the tests that have

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

failed so that fixes can be introduced into the code. If no unit test was present for a particular

discovered bug earlier, a unit test should be implemented in the upcoming bug fix commit.

The fix is committed with a commit message that includes the bug number so as to facilitate

the tracking of bug fixes. The new commit should trigger a new pipeline reverting the process

back to step 3. If no tests fail during unit testing at step 4, this step is omitted altogether.

6

Integration testing: Integration testing should follow unit testing as an automated test job in

the CI/CD pipeline and address the need for the new/updated component to work together

with other components. Integration tests should therefore focus on component interface in-

tegrity. Whenever a component or system is not physically available for the test, a simulated

(or “mock”) response/command set is used to emulate its usage. Thorough information on the

test planning is presented in deliverable D4.6.

7 (optional)

Developer commits integration test fixes: If integration testing fails to verify the compatibility

of components in the integrated prototype, much like in step 5, the developer of the compo-

nent should introduce appropriate fixes. As is the case with step 5, the fix is committed with a

commit message that includes the bug number so as to facilitate the tracking of bug fixes. The

new commit should trigger a new pipeline reverting the process back to step 3. If no tests fail

during unit testing at step 6, this step is omitted altogether.

8

Integrator reviews staging app: The GitLab CI/CD pipeline should progress to the next job

which should deploy the code into a staging environment prior to its release in production.

The main purpose of this step is to facilitate a pre-release version of the system, with all new

changes deployed in order for the integrators to preview them and ensure that they are work-

ing as expected.

9

Developer commits merge request: When the new component meets success criteria defined
in its test plan (unit and integration testing), and the new feature is approved, the developer
merges the branch changes into the main codebase (default branch). In the unlikely event of
a conflict during the merge operation, the developer is tasked with resolving these conflicts
manually. This includes downloading the latest changes to the code of the default branch,
which should include any changes made since the feature branch was created. The developer
should re-ensure that their version of the component works in a similar fashion to the previous
default codebase, i.e., repeat the CI/CD process. The merge request can then be re-attempted.

10 Integrator moves deployment to production: A new production build is deployed and all de-

velopers are notified. Every new feature should now trigger the CI/CD process at step 1, using

the new codebase as the default branch.

2.3 Gitlab repository

As already mentioned, GitLab is utilised as the centralized source code repository and management system to
keep track of every part of the 5G-EPICENTRE source code, contributed to by all the technical partners. Using
GitLab as a distributed version control system tool, developers are able to clone the code on a local machine,
creating a safe environment for experimentation without affecting functionality of the overall system. Once the
desired features or changes have been implemented, the updated code is pushed back to the remote repository,
making them available to the entirety of the development team.

A dedicated 5G-EPICENTRE group has been set up in GitLab, i.e., https://gitlab.5gepicentre.eu.

https://gitlab.5gepicentre.eu/

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

3 Cross-testbed federation & synchronization approach

One of the main features of 5G that was not present in previous technologies is the virtualisation of its different
elements. This offers versatility, dynamism and flexibility, both in its deployment and in the interactions with
verticals, and opens the door to the intelligence that will be present in future network generations. For this
reason, the adoption of microservices in the framework of 5G-EPICENTRE has been supported, both at the plat-
form level and at the experimentation level. The platform must be ready for experimental needs and at the same
time, align with technology trends to have a useful life beyond the lifetime of the project. However, the orches-
tration and management of multiple services is complex, and becomes even more complicated when elements
are mixed, such as different testbeds, platform components, or the verticals themselves. This is why the project
partners have opted for the advantages provided by Karmada2, which will serve as an abstraction layer to sim-
plify the K8s orchestration processes.

3.1 Initial approach

The 5G-EPICENTRE project is developing a federated architecture for testing 5G applications. One of the key
components of this architecture is the cross-testbed Management & Orchestration (MANO), which will provide
a unified interface for managing resources across multiple testbeds.

The initial approach involves the concept of cross-testbed federation, which enables multi-clustered K8s orches-
tration across different domains. A K8s-based orchestrator manages and provides access to service resources for
individual containerized workloads in testbeds, allowing for testbed federation and synchronization. The cross-
testbed federation could be implemented using Karmada, a K8s management system that allows the federation
of multiple K8s cluster.

Karmada is an open, multi-cloud, multi-cluster K8s orchestration platform, that facilitates the deployment of
cloud-native applications across multiple K8s clusters without requiring application modifications. It leverages a
centralized control plane to deploy and manage applications on multiple clusters, known as member clusters.
Karmada also supports the federation of K8s resources in a multi-cluster environment. Initially, Karmada pro-
vides cluster federation across different testbed infrastructures, with the potential for further development to
meet the architectural requirements of the 5G-EPICENTRE project (see also D1.4).

Karmada offers open and multi-cloud K8s orchestration by utilizing K8s-native APIs and advanced scheduling
capabilities. Key features that are relevant to the project’s cross-testbed MANO solution include:

• Centralized management: Karmada provides a centralized API for managing resources across multiple
clusters. This simplifies the management of resources, and makes it easier to track the status of applica-
tions.

• Multi-cluster scheduling: Karmada can schedule applications across multiple clusters, which can im-
prove the performance and availability of applications.

• Fault tolerance: Karmada can tolerate failures of individual clusters, which ensures that applications
continue to run even if one of the clusters fails.

The architecture of Karmada resembles that of a single K8s cluster, with components such as a control plane, API
server, scheduler, and controllers. Figure 2 illustrates these components. They play a crucial role in facilitating
communication, policy enforcement, and workload management within the cross-testbed MANO framework.

The API server provides K8s native APIs and policy APIs, while the scheduler implements sophisticated multi-
dimensional, multi-weight, and multi-cluster scheduling policies. Karmada employs an agent-based pull mode
for member cluster synchronization, enabling efficient management of large-scale, multi-cluster resource pools.

2 https://karmada.io/

https://karmada.io/

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

Figure 2: Multi-cluster K8s Federation across different 5G-EPICENTRE Testbeds Infrastructures (adapted from [1])

Additionally, it offers support for Execution Controller and KubeEdge integration, enabling seamless manage-
ment of K8s clusters in diverse network environments, including public, private, and edge clouds. The execution
provided by Karmada ensure isolation of access permissions and resources across multiple clusters.

The configuring federated resources in Karmada involves three fundamental concepts: template, placement,
and override. The resource template defines attributes shared among member clusters, while placement deter-
mines the selection of a member cluster for a federated resource. Override allows for cluster-specific configura-
tions, tailored to selected member clusters.

By adopting Karmada as a cross-testbed federation solution, the 5G-EPICENTRE project can achieve efficient re-
source management, synchronization and 5G applications deployment across diverse testbed infrastructures.

3.2 Developments

Karmada incorporates a Policy API as multi-cloud scheduling policy, or "Propagation Policy" (Figure 3b), to man-
age the propagation of services across multiple K8s clusters. This term serves as a declarative mechanism for
defining how the resources submitted to system should be deployed into a single, or group of clusters, based on
attribute or label. All services must include the propagation policy within deployment in which the user identifies
the deployment policies. The presented Figure 3a succinctly illustrates the workflow of the scheduler, providing
an overview of the key stages. Upon submission, the binding controller receives this information and proceeds
to populate the necessary details within the binding object. Karmada scheduler uses a watch method to API
server, and is notified about the changes of those binding resources [2]. Once the scheduler is triggered, the
process of scheduling starts based on the plugin enabled in the scheduler images. Karmada scheduler has a plug-
gable framework, allowing the definition of diverse sub-functions without altering the core of the scheduler. It
means that the Karmada scheduler can easily incorporate new scheduling algorithms or policies as plug-ins, with-
out requiring significant modifications to the underlying system. For the moment, the built-in plugin in Karmada
mainly are: cluster affinity; API enablement; cluster eviction; cluster locality; spread constraint; taint; and tolera-
tion, and uses the role of resource selector to apply the plugins to the specified resources. In the context of the
5G-EPICENTRE project, the deployment mainly uses cluster affinity (see Section 3.2.1) and latency-aware (see
Section 3.2.2) plugins for the purpose of testing.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

Figure 3: a) Scheduling workflow [2] b) example of propagation policy

Propagation policy also encompasses the capability of scheduling replicas using two strategies, i.e., Duplicate
and Divide. In the Duplicate strategy, all replicas are consolidated within a single cluster, while the Divide strategy
distributes the replicas among all identified clusters, aggregating them in a single cluster, or proportionally allo-
cating them based on the weight assigned to each cluster. This dynamic allocation mechanism specified in the
Propagation Policy offers users the flexibility to choose the most suitable strategy that aligns with their specific
workload and resource requirements.

3.2.1 Cluster affinity plugin

Cluster affinity plugin is a built-in plugin of Karmada’s scheduler, which allows Verticals to influence the sched-
uling and placement of Vertical, or Network Applications onto specific cluster. It enables fine-grained control
over service placement, by defining rules that express the desired association between service and clusters based
on cluster attributes. Cluster affinity enhances better resource utilization, by strategically distributing services
across clusters with the most suitable resources. It has four fields to set in propagation policy: label selector, field
selector, cluster names, and exclude clusters that can be defined as affinity in propagation policy to filter out and
score the clusters [1].

3.2.2 Latency-aware plugin

The latency-aware plugin is a customized scheduler plugin to guarantee the fulfilment of required Key Perfor-
mance Indicators (KPIs) by computing the optimal placement for a given service, while the cluster resources (like
Central Processing Unit - CPU) is used efficiently. To ensure that the latency is fulfilled, the scheduler subscribes
to a RabbitMQ broker to obtain the measured ping time as latency of each member cluster. If the latency is
fulfilled, the service is deployed in cluster with the best conditions. If the latency is not fulfilled, the service will
be load balanced among clusters with less latency. In this regard, the scheduler utilizes a set of client sets to
expose the member clusters’ API to retrieve the aggregated available CPU resources of each cluster.

The functionality provided by the latency-aware plugin is found to be incompatible with affinity rules in propa-
gation policy, since the key parameter is the requested KPI from the vertical. Once the user submits the deploy-
ment, the cluster list should be empty (the list of clusters in Figure 3b), thereby allowing the function to poten-
tially utilize all available resources comprehensively.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

3.3 Outcomes

The federation is composed of 4 testbeds, each hosting its own K8s clusters. In the implementation of the fed-
eration built by Karmada, Figure 4 showcases the connectivity and relationships between these components:

Figure 4: Federation built by Karmada with the different Testbed clusters

To begin, Karmada is installed within a single K8s cluster located at CTTC. This serves as the central control plane
for the federation. To establish communication and coordination between CTTC and each testbed, a Virtual Pri-
vate Network (VPN) is set up. Using the established VPN connections, the K8s cluster hosted within each testbed
can be seamlessly joined to the federation created by Karmada. This means that the resources and capabilities
offered by these individual testbeds become part of the larger federation.

CTTC not only serves as the provider of the overall federation infrastructure, but also contributes with several
K8s clusters for the various use cases it hosts. These locally provided K8s clusters within CTTC are also integrated
into the federation, enhancing the federation's collective resources, and enabling a wider range of use cases to
be supported.

Overall, the federation, orchestrated by Karmada and interconnected through VPNs, enables the collaboration
and coordination of resources across the different testbeds and their respective K8s clusters. This integration
promotes efficient resource utilization, increased scalability, and the ability to execute diverse applications and
experiments within the federation.

3.4 Service deployment process in the federation

The 5G-EPICENTRE architecture is designed in a modular way so that the services offered to other building blocks
of the architecture are clearly defined. In this sense, the operation of the federation layer is transparent to the
experimenter. That is, the experimenter interacts with the 5G-EPICENTRE experimentation framework through

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

the Portal (see D3.2), where they select the testbed in which the service needs to be deployed. Then, the Exper-
iment Coordinator (see D2.5) maps this selection to the corresponding field of the propagation policy that is
needed by Karmada, and sends the request to Karmada. According to this operation, the service is automatically
deployed by Karmada in the corresponding testbed.

In summary, the federation layer allows exposing all testbeds of the project as an aggregated experimentation
platform that is consumed in a unified way by the building blocks of the Backend Layer of the 5G-EPICENTRE
architecture (see D1.4). Therefore, the Backend Layer consumes the federation layer API on the southbound,
and interacts with the experimenter on the northbound.

However, before the federation acts transparently to the end-user in coordination with the backend-layer, the
federation manager needs to set it up by following the steps below.

3.4.1 Accessing Karmada and the Kubernetes clusters

Karmada itself is deployed in a K8s cluster. To access it, kubeconfig files need to be configured, being the main
parameter to configure the IP address, port, user, and credentials, through which the cluster will be accessible.
Figure 9 presents an example, where the leftmost file corresponds to the cluster where Karmada is deployed,
and the other two correspond to two clusters that will be part of the federation (others may join as well in the
same way).

Figure 5: Kubeconfig files to access the clusters

3.4.2 Setting up the federation

The next step is to build the federation, by making each cluster join it as a member cluster. Following the above
example, we have two member clusters, with names cluster-uma and cluster-cttc-nem, that join the federation
through the following commands:

kubectl-karmada join cluster-uma --kubeconfig=$HOME/clusters_config/karmada-apiserver.config --clus-
ter-kubeconfig=$HOME/clusters_config/member-uma.config --cluster-context=cluster-uma

kubectl-karmada join cluster-cttc-nem --kubeconfig=$HOME/clusters_config/karmada-apiserver.config --
cluster-kubeconfig=$HOME/clusters_config/member-cttc-nem.config --cluster-context=cluster-cttc-nem

In addition to the cluster name, the parameters provided in the command are the kubeconfig file of the Karmada
API server, that will act as entry point of the Karmada control plane of the federation; and the kubeconfig file of
the member cluster.

We can confirm that they currently joined the federation through the following command:

kubectl get clusters

which yields the results depicted in Figure 6.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

Figure 6: Member clusters appearing in the federation after kubectl get clusters. The remaining clusters (one per 5G-
EPICENTRE testbed) that appear in the list had joined the federation in the same way as those provided as example above.

3.4.3 Deploying services through Karmada

Once the federation is set up, one can deploy services in the federation in (almost) the same way as done in a
regular K8s cluster, including using the same commands. The main difference is that an additional configuration
yaml file needs to be provided, to specify the constraints of the deployment that will be applied to the service,
as far as the multiple clusters that compose the federation are concerned. This is done by applying what is re-
ferred to as propagation policy, by executing the following command:

kubectl apply -f propagationpolicy.yaml

This includes, for instance, clusterAffinity, which defines what clusters can be used to deploy a given service (and
so, which cannot) or replicaScheduling, which defines the philosophy followed to distribute the replicas of a given
service throughout the cluster, in case there are replicas. See the example in Figure 7.

Figure 7: Sample propagation policy yaml used in UC2

Once the deployment constraints are defined, the service can be deployed in the same way as in a regular K8s
cluster, through the following command:

kubectl apply -f deployment.yaml

Figure 8 presents a simple example of the deployment file of a service consisting of a nginx pod.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

Figure 8: Sample service deployment yaml

Once these steps are followed, Karmada will deploy the service in the corresponding member cluster(s), by send-
ing them the corresponding commands transparently.

As mentioned above, these commands are explained here for completeness, though they are transparent to the
experimenter, since the backend layer and the federation have been integrated, so that the deployment charac-
teristics specified through the Portal are automatically mapped to these commands. More specifically, the Ex-
periment Coordinator building block of the Backend Layer is the one sending these commands to Karmada.

After these commands are run, the service is fully operational in the federation. For more details on the behav-
iour/performance of services in testbeds once they are deployed, see deliverable D5.2.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

4 Integrated 5G-EPICENTRE experimentation facility

This Section elaborates on the integration of the 5G-EPICENTRE experimentation facility. The integration ulti-
mate goal is to deliver a concrete implementation of the reference architecture defined in D1.4. As specified in
D4.4, the system implements both downstream (i.e., usage of front-end tools to setup and calibrate infrastruc-
ture components) and upstream (i.e., infrastructure components generating data that is presented to the user
via a user interface) information flows (illustrated in Figure 9). These aim at supporting the platform usage sce-
narios, as defined in D1.4 (Section 3.7 Information view):

• Delegating vertical application components to the testbed operator (downstream).

• Scheduling an experiment (downstream).

• Experiment deployment (downstream).

• Experiment monitoring during execution (upstream).

Figure 9: 5G-EPICENTRE platform overall functional architecture component diagram.

Integration further alludes to the developments necessary to homogenize the testbeds in terms of supporting
the functionalities that the 5G-EPICENTRE platform and underlying infrastructures have to offer, such as analytics
calculation and traffic simulation. This augmentation architecture is summarized in Figure 10.

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Málaga testbed cluster

ETCD

Karmada Controllers

Cluster
Controller

Policy
Controller

Binding
Controller

Execution
Controller

Karmada API Server
Karmada

Scheduler

Karmada Control Plane

Federation Layer

Helm Chart repo
OpenAPI

Server

Network Service Repository
5G Traffic

Simulation
Manager

Experiment
Coordinator

Analytics
Aggregator

Back-End Layer

Front-End Layer

Portal Back-end

Portal Front-end

5G-EPICENTRE Portal

Portal repo

Vertical Domain

Northbound
Configuration

Dashboard

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Aveiro testbed cluster Barcelona testbed cluster Berlin testbed cluster

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Containerised NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

QoS/QoE Monitor &
Anomaly Detection

KPI Monitor

Analytics Driver

5G RAN

Platform IaaS/PaaS

5G-EPICENTRE Testbed Platform

Network Application Layer (Hybrid)

Vertical (PPDR) Application Functions Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Northbound API / ConfiguratorNorthbound API / ConfiguratorNorthbound API / Configurator

Málaga
Cluster Agent

Aveiro
Cluster Agent

Barcelona
Cluster Agent

Berlin
Cluster Agent

D
o

w
n

st
re

am

U
p

stre
am

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

Figure 10: 5G-EPICENTRE Platform-as-a-Service (PaaS) and Network Applications Layers (delegated at testbeds).

Finally, integration corresponds to the specification of the information flow throughout the system; which com-
ponents should be involved in the different usage scenarios; and how information is orchestrated and flows
throughout the system during its usage. Integration is hence addressed through the definition and implementa-
tion of well-defined interfaces, with concretely established inputs and outputs. A component thus exposes meth-
ods to other elements, or consumes methods exposed by other elements in the architecture, so that exchange
of data can be facilitated via pre-specified sets of parameters. The outcome of this entire process, which corre-
sponds to activities in Task 4.4, is the concrete definition of all necessary Application Programming Interfaces
(APIs) that implement these procedures. In 5G-EPICENTRE, two components are considered “integrated” when
either one is able to consume the APIs exposed by the other.

The remainder of this Section will elaborate on the integration of the individual components and technologies
utilized towards delivering on the 5G-EPICENTRE experimentation facility usage scenarios.

4.1 Delegating vertical application components to the testbed operator

In this scenario, the experimenter transfers (i.e., delegates) the vertical experiment application components to
the testbed administrator(s), for the latter to get the experiment environment up and running. The transfer is
based on the Helm chart template, to leverage its simplicity and automation benefits for K8s deployments [3].
After the delegated Helm chart package has been inspected and verified by a testbed administrator, it is even-
tually hosted on the Network Service Repository, becoming available to the Experiment Coordinator component
(see Section 4.2).

The downstream information flow supporting this usage scenario involves integration of Front-end (i.e., 5G-EPI-
CENTRE Portal) and Back-end Layer components (i.e., Network Service Repository), and should support different
variants, such as being able to delete vertical application Helm charts from the repository.

The following paragraphs describe all APIs used to connect the various entities in the 5G-EPICENTRE architecture
for facilitating this usage scenario.

Containerized NFVI

5G Core Network

Prometheus

RabbitMQ
Message Broker

Publisher

Remote iPerf AgentRemote iPerf AgentRemote iPerf Agent(s)

Kubernetes Testbed
Management Architecture

Load Balancer

Remote iPerf AgentRemote iPerf AgentWorker Node(s)

Remote iPerf AgentRemote iPerf AgentMaster Node(s)

Control Plane

Analytics Engine

Quality of Service /
Quality of Experience

Monitoring service

KPI Monitoring service

Analytics Driver

5G RAN

Platform as a Service (PaaS) Infrastructure

5G-EPICENTRE Testbed Platform

Network Application Layer

Delegated Vertical (PPDR) Application Functions Platform Network Application Functions

UC1 Vertical
Application

UC5 Vertical
Application

UC2 Vertical
Application

UC6 Vertical
Application

UC3 Vertical
Application

UC7 Vertical
Application

UC4 Vertical
Application

UC8 Vertical
Application

Configurator

Network Intrusion and Detection System

Analytics Engine services

Prometheus

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

4.1.1 5G-EPICENTRE Portal - Network Service Repository integration

Towards supporting the operations described in this usage scenario, the 5G-EPICENTRE Portal (“Portal”, de-
scribed in D3.2) consumes APIs exposed to it by the Network Service Repository (“Repository”) OpenAPI Server
sub-module.

4.1.1.1 Put File API

This API is consumed by the Portal to upload a file to the Repository. It uses the PUT request methods to either
create a brand-new resource, or replace a previous one with the target resource name. The API documentation
is summarised in Table 4. If the query is not successful, the response contains the corresponding error code and
message.

Table 4: API for uploading a file to the Repository using the specified “filename”

Put File

Method PUT

Endpoint /:filename

Request Headers

Authorization [String] REQUIRED

Basic Username and Password based authentication scheme for the user making the re-

quest, containing the Basic word followed by a space and a base64-encoded

username:password string.

Request Body
filedata [Blob] REQUIRED

The file to be uploaded to the repository, formatted as ‘Blob’ immutable raw data.

Response
200 The query was successful.

500 The server cannot process the request for an unknown reason.

4.1.1.2 Delete File API

This API is consumed by the Portal to delete a file from the Repository. It uses the DELETE request method to
permanently remove the specified resource. The API documentation is summarised in Table 5. If the query is not
successful, the response contains the corresponding error code and message.

Table 5: API for deleting a file from the Repository specified by “filename”

Delete File

Method DELETE

Endpoint /:filename

Request Headers

Authorization [String] REQUIRED

Basic Username and Password based authentication scheme for the user making the re-

quest, containing the Basic word followed by a space and a base64-encoded

username:password string.

Request Body None

Response 200 The query was successful.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

404 The user is able to communicate with the server but it is unable to locate the re-

quested file or resource for deletion.

 500 The server cannot process the request for an unknown reason.

4.2 Scheduling an experiment

In this scenario, the experimenter requests the scheduling and execution of a vertical application experiment, by
selecting the prior delegated vertical application components (see Section 4.1). The process involves exposure
of calibration parameters to specify the experiment environment, e.g., simulation of varying types of network
traffic, or definition of vertical-specific KPIs to be collected and monitored during the experiment. The infor-
mation is stored in an experiment descriptor file, i.e., a structure exchanged between the Portal and the Back-
end layer experiment coordination components, toward describing the creation of all necessary K8s objects to
be deployed in the designated testbed cluster (see also D3.2). Upon acceptance of the experiment by the testbed
administrator, the Experiment Coordinator automatically applies the deployment YAML to the Karmada API
server (see Section 3) at the designated time window where the execution was scheduled.

The downstream information flow (see Figure 11) supporting this usage scenario involves primarily integration
of Front-end (i.e., 5G-EPICENTRE Portal) and Back-end Layer components (i.e., Network Service Repository, Ex-
periment Coordinator), and should support different variants, such as being able to cancel an experiment upon
request by the experimenter.

Figure 11: 5G-EPICENTRE component integrations supporting the “Scheduling an experiment” usage scenario

The following paragraphs describe all APIs used to connect the various entities in the 5G-EPICENTRE architecture
for facilitating this usage scenario.

4.2.1 5G-EPICENTRE Portal – Network Service Repository

Towards supporting the operations described in this usage scenario, the 5G-EPICENTRE Portal (“Portal”, de-
scribed in D3.2) consumes APIs exposed to it by the Network Service Repository (“Repository”) OpenAPI Server.

Portal

Karmada Federation

Exp Coord OpenAPI Server

Backend layer

JFrog repository

Experiment Id

Descriptor

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

4.2.1.1 Get All API

This API is consumed by the Portal to retrieve the complete list of filenames in the Repository, for the experi-
menter to obtain their own vertical application artefacts for experimentation. The API documentation is summa-
rised in Table 6. If the query is not successful, the response contains the corresponding error code and message.

Table 6: API for returning the list of filenames in the repository

Get All

Method GET

Endpoint /

Request Headers

Authorization [String] REQUIRED

Basic Username and Password based authentication scheme for the user making the re-

quest, containing the “Basic” word, followed by a space and a base64-encoded

username:password string.

Request Body None

Response

200 The query was successful. The response will contain a list of filenames in the reposi-

tory, or an empty list, if no filenames are found.

500 The server cannot process the request for an unknown reason.

4.2.1.2 Get File API

This API is consumed by the Portal to retrieve the specified file information and metadata from the Repository,
which can be used to further elaborate experimentation parameters with the vertical application’s microservices.
The API documentation is summarised in Table 7. If the query is not successful, the response contains the corre-
sponding error code and message.

Table 7: API for returning the file information and content specified by “filename”

Get File

Method GET

Endpoint /:filename

Request Headers

Authorization [String] REQUIRED

Basic Username and Password based authentication scheme for the user making the re-

quest, containing the Basic word followed by a space and a base64-encoded

username:password string.

Request Body None

Response

200 The query was successful. The response will contain the contents of “Chart.yaml”, if

the file is in an archive file format.

404 The user is able to communicate with the server, but it is unable to locate the re-

quested file or resource.

500 The server cannot process the request for an unknown reason.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

4.2.2 5G-EPICENTRE Portal – Experiment Coordinator

Towards supporting the operations described in this usage scenario, the 5G-EPICENTRE Portal (“Portal”, de-
scribed in D3.2) consumes APIs exposed to it by the Experiment Coordinator (“Coordinator”).

4.2.2.1 Experiment Run API

This API is used to send an experiment descriptor to the Coordinator. The API documentation is summarised in
Table 8. The response for this API contains the execution identifier of the experiment that has been queued for
execution. If the query is not successful, the response contains a 404 error.

Table 8: API for creating and queueing a new experiment execution, based on the contents of an experiment descriptor

Experiment Run

Method POST

Endpoint /experiment/run

Request Headers None

Request Body

descriptor [Object] REQUIRED

A JavaScript Object Notation (JSON) structure exchanged between the Portal and the Co-

ordinator to create and queue a new experiment execution in one of the testbed infra-

structures. Its fields are elaborated in D3.2 (Section 4.2.2 in that document).

Response

200 The requested experiment was created and queued at the Coordinator. The response

will contain the execution id of the experiment queued.

404 A connection error has occurred with the Experiment Coordinator.

4.2.2.2 Experiment Cancel API

This API us used for the elimination of an experiment in execution, identified by its id. It is used to mark the
selected execution for cancellation. The execution will be cancelled after finalization of the current task. The API
documentation is summarised in Table 9. The response for this API contains a copy of the Experiment Descriptor
(see D3.2) that was used to define the execution of the experiment. If the query is not successful, the response
contains the corresponding error code and message.

Table 9: API for marking the experiment for cancellation, specified by “id”

Experiment Cancel

Method DELETE

Endpoint /experiment/:id/cancel

Request Headers None

Request Body None

Response

200 The query was successful.

404 Communication with the Experiment Coordinator has not been possible.

500 The experiment Id in execution or in standby was not found.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

4.2.3 Experiment Coordinator – Network Service Repository

Once it receives the instructions from the Portal in the form of a descriptor (see Section 4.2.2.1), the Coordinator
receives the necessary artefacts from Repository’s OpenAPI (proxy) server, using the Get File APIs described in
Section 4.2.1.2.

4.2.4 Experiment Coordinator – Karmada API Server

After receiving the Helm chart, the Coordinator communicates with the Karmada federation, for deployment of
the artefacts on each testbed (see Section 3).

4.3 Experiment deployment

In the ‘Experiment deployment’ scenario, the Experiment Coordinator has created and queued a new experiment
execution in one of the testbed infrastructures using the information obtained by the 5G-EPICENTRE Portal in
the descriptor exchange (Section 4.2.2.1). Alongside information on the artefacts and configuration parameters
facilitating the deployment of the vertical application under the specifically desired test conditions, a time win-
dow (i.e., a start and end date for the experiment) is specified for each experiment request, in which the Exper-
iment Coordinator’s internal scheduling components (see D2.5) query the testbed for resources’ availability. If
the Coordinator is unable to schedule the experiment between the start date and the end date, it will terminate
the experiment.

Architecture update: to address problems when communicating the Coordinator with the different Remote iPerf
Agents (probes) deployed in the different testbeds (i.e., all the probes of the different testbeds should be stored
in a unique 5G Traffic Simulation Manager (“Traffic Manager”), and each time the IP assigned to one of those
probes changes it must also be notified to the Traffic Manager, which can be problematic). By having each
testbed host an instance of the Traffic Manager instead of the Backend Layer, the Experiment Coordinator will
only have to set up connections to the different Traffic Manager instances, and the communication with the
probes (e.g., UEs, etc.) will instead depend on each testbed.

This downstream information flow (see Figure 12) supporting this usage scenario involves primarily the integra-
tion of the Back-end Layer (i.e., Experiment Coordinator) and of the Infrastructure Layer components (i.e., Traffic
Simulation Manager, Publisher).

Figure 12: 5G-EPICENTRE component integrations supporting the “Experiment deployment” usage scenario

19

Portal

Backend layer
Exp Coord

Testbed 1 Testbed 2 Testbed 3 Testbed 4

5GTSM 5GTSM 5GTSM 5GTSM

Remote iPerf AgentRemote iPerf Agent
Remote iPerf Agent

Remote iPerf AgentRemote iPerf Agent
Remote iPerf Agent

Remote iPerf AgentRemote iPerf Agent
Remote iPerf Agent

Remote iPerf AgentRemote iPerf Agent
Remote iPerf Agent

*5GTSM = 5G Traffic Simulation Manager

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

The following paragraphs describe all APIs used to connect the various entities in the 5G-EPICENTRE architecture
for facilitating this usage scenario.

4.3.1 Experiment Coordinator – 5G Traffic Simulation Manager

The Experiment Coordinator (“Coordinator”, described in D2.5) consumes APIs exposed to it by the 5G Traffic
Simulation Manager (“Traffic Manager”, described in D2.5) exposed on each testbed, to pass the parameters
needed for traffic generation.

4.3.1.1 Start API

This API executes an iPerf command with its parameters on the Agent identified by the “id” field in the “re-
quest_body” parameter. This is intended to be the normal way to start a server/client on a remote agent. The
API documentation is summarised in Table 10. The response for this API contains a JSON with the metadata
required, as well as the iPerf parameters for traffic generation. If the query is not successful, the response con-
tains the corresponding error code and message.

Table 10: API for starting traffic generation on a remote iPerf Agent specified by the “id” parameter inside “request_body”

Start

Method POST

Endpoint /start

Request Headers None

Request Body

netapp_id [String] OPTIONAL

Id for vertical system under test identification.

origin [String] REQUIRED

Origin of the measures. Potential acceptable values are "UE", "RAN", "5GC", "EPC", "main

data server", or "edge".

userId [String] REQUIRED

User identification.

experiment_id [Number] REQUIRED

Experiment identifier, provided by the Experiment Coordinator.

publish [Boolean] REQUIRED

Indicates whether the generated traffic measurements should be published in the Rab-

bitMQ queue or not.

request_body [Object] REQUIRED

The request body contains the data necessary to identify and configure the agents. Its

contents are described in Table 15.

Response
200 The response will contain a JSON Object with metadata and iPerf parameters for traf-

fic generation.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 34

404 Indicates that the connection to the 5G Traffic Simulator Manager has not been pos-

sible.

 500 Indicates that there was an error in the input format.

4.3.1.2 Stop API

This API stops an iPerf server running on a remote Agent, identified by a dictionary with the keyword “agent_id”
and value “id”. The API documentation is summarised in Table 11. The response for this API contains a JSON with
the necessary information for the identification of the agent to be stopped. If the query is not successful, the
response contains the corresponding error code and message.

Table 11: API for terminating traffic generation on a remote iPerf Agent

Stop

Method POST

Endpoint /stop

Request Headers None

Request Body

userId [String] REQUIRED

User identification.

request_body [Object] REQUIRED

The request body contains the necessary to identify the agent to be stopped. Its contents

are described in Table 15.

Response

200 The Agent specified by the “agent_id” keyword has stopped executing.

404 Indicates that the connection to the 5G Traffic Simulator Manager has not been pos-

sible.

500 Indicates that there was an error in the input format.

4.3.2 Experiment Coordinator – Publisher

The Experiment Coordinator (“Coordinator”, described in D2.5) consumes APIs exposed to it by the Publisher
architectural block exposed on each testbed, for metadata assignment.

4.3.2.1 Fetch Metrics API

This API is used to fetch new Prometheus client data, if available. Data will be fetched until the “end-time” is
reached or until the Coordinator stops the search. The API documentation is summarised in Table 12. The re-
sponse for this API contains a JSON, reporting the measures requested from the Prometheus client. If the query
is not successful, the response contains the corresponding error code and message.

Table 12: API for fetching metrics from the Publisher, using the Prometheus client

Fetch Metrics

Method POST

Endpoint /fetch_metrics

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 35

Request Headers None

Request Body

metrics [List] REQUIRED

Contains a list of the parameters needed to obtain the metrics. These parameters are:

• query [String] REQUIRED

A valid query for the Prometheus client.

• unit [String] OPTIONAL

Unit in which the measures are to be received.

• origin [String] REQUIRED

Indicates the origin of the measurements.

end_time [Date] OPTIONAL

Indicates until when to receive measurements.

interval [Int] OPTIONAL

Indicates at what interval to receive measurements.

Response

200 The operation was successfully executed, the response containing the measures re-

quested from the Prometheus client.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

4.3.2.2 Add Experiment API

This API adds a JSON containing metadata for the Publisher to store. When the corresponding experiment results
are read from the MQTT, they will be filled with this metadata. The API documentation is summarised in Table
13. The response for this API contains a message confirming that the experiment metadata has been added. If
the query is not successful, the response contains the corresponding error code and message.

Table 13: API for adding metadata for an experiment to the Publisher

Add Experiment

Method POST

Endpoint /add_experiment

Request Headers None

Request Body

experiment_id [Number] REQUIRED

The id of the experiment.

testbed_id [Number] REQUIRED

The id of the testbed where it is going to be executed.

scenario_id [Number] REQUIRED

The id of the scenario where the experiment is to be run.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 36

use_case_id [Number] REQUIRED

The id of the use case to which the experiment belongs.

netapp_id [String] REQUIRED

The id of the vertical system under test to which the experiment Belongs.

Response

200 The operation was successfully executed. The response will contain a message saying

that the experiment metadata has been added.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

4.3.2.3 Remove Experiment API

This API removes the metadata of a given experiment stored in the Publisher. The API documentation is summa-
rised in Table 14. The response for this API contains a message confirming that the experiment metadata has
been removed. If the query is not successful, the response contains the corresponding error code and message.

Table 14: API for removing metadata for an experiment from the Publisher

Remove Experiment

Method POST

Endpoint /remove_experiment

Request Headers None

Request Body

experiment_id [Number] REQUIRED

The id of the experiment.

testbed_id [Number] REQUIRED

The id of the testbed where it is going to be executed.

scenario_id [Number] REQUIRED

The id of the scenario where the experiment is to be run.

use_case_id [Number] REQUIRED

The id of the use case to which the experiment belongs.

netapp_id [String] REQUIRED

The id of the vertical system under test to which the experiment Belongs.

Response

200 The operation was successfully executed. The response will contain a message saying

that the experiment metadata has been removed.

404 Indicates that the connection to the Publisher has not been possible.

500 Indicates that there was an error in the input format.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 37

4.3.3 5G Traffic Simulation Manager - Remote iPerf Agent

The 5G Traffic Simulation Manager (“Traffic Manager”) consumes APIs exposed to it by one or more Remote
iPerf Agents (“Agents”), which are responsible for simulated traffic generation.

4.3.3.1 iPerf API

This API executes iPerf process with the specific parameters specified in the request body in JSON format. The

API documentation is summarised in Table 15. The response for this API contains a JSON Object, reporting the

success of the execution request. If the query is not successful, the response contains the corresponding error

code and message.

Table 15: API for executing iPerf Agent operations

iPerf

Method POST

Endpoint /Iperf

Request Headers None

Request Body

agent_id [String] REQUIRED

Identifier of the agent involved in traffic generation.

action [String] REQUIRED

Action to be performed by the agent.

parameters [Object] REQUIRED

A JSON Object which includes the agent configuration parameters based on the iPerf tool.

There will be one entry for each configuration flag.

Response

200 The operation was successfully executed. The response will contain a JSON, reporting

the success of the execution, and a message, e.g.:

{

 “Status”:”Success”,

 “Message”:”Successfully executed iPerf <mode>”

}

404 Indicates that the connection to the Remote iPerf Agent has not been possible.

500 Indicates that there was an error in the input format.

4.3.3.2 Close API

This API terminates an iPerf process. The API documentation is summarised in Table 16. The response for this
API contains a JSON Object, reporting the success of the termination request. If there has been a connection
failure, the response contains a 404 error.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 38

Table 16: API for terminating an iPerf Agent operation

Close

Method GET

Endpoint /Close

Request Headers None

Request Body None

Response

200 The query was successful. The response will contain a JSON reporting the success of

the execution and a message:

{

 “Status”:”Success”,

 “Message”:”Successfully closed iPerf”

}

404 Indicates that the connection to the Remote iPerf Agent has not been possible.

4.3.3.3 Last JSON Result API

This API is used to retrieve the result of the previous iPerf execution. The API documentation is summarised in
Table 17. The response for this API contains a JSON Object with the list of desired results. If there has been a
connection failure, the response contains a 404 error.

Table 17: API for retrieving the result of the last iPerf Agent operation

Retrieve

Method GET

Endpoint /LastJsonResult

Request Headers None

Request Body None

Response

200 The query was successful. The response will contain a JSON reporting the success of

the retrieval, a message and a list of Results (dictionary with parsed results):

{

 “Status”:”Success”,

 “Message”:”Successfully retrieved last raw result”,

 “Result”:<Parameters Dict>

}

404 Indicates that the connection to the Remote iPerf Agent has not been possible.

4.4 Experiment monitoring during execution

In this scenario, the experimenter can monitor platform-generated metrics and statistical information in real
time, and through explanatory data visualizations, generated automatically at the start of the vertical application

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 39

deployment. Insights generated and charted into graphics include experimental condition indicators, network
traffic metrics, KPIs and detected anomalies.

The upstream information flow (see Figure 13) supporting this usage scenario involves integration of Front-end
(i.e., 5G-EPICENTRE Portal, Back-end, (i.e., Analytics Aggregator, Experiment Coordinator), and Infrastructure
Layer components (i.e., Analytics Engine, Publisher, testbed infrastructure).

Figure 13: 5G-EPICENTRE component integrations supporting the “Experiment monitoring during execution” usage scenario

The following paragraphs describe all APIs used to connect the various entities in the 5G-EPICENTRE architecture
for facilitating this usage scenario.

4.4.1 5G-EPICENTRE Portal – Experiment Coordinator

Towards supporting the operations described in this usage scenario, the 5G-EPICENTRE Portal (“Portal”, de-
scribed in D3.2) consumes APIs exposed to it by the Experiment Coordinator (“Coordinator”).

4.4.1.1 Get Logs API

This API is used to obtain the logs generated in the execution of an experiment identified by its id. The API doc-
umentation is summarised in Table 18. The response for this API contains a JavaScript Object Notation Object
(JSON) that contains all the log messages generated by the execution, separated by stage, as follows (refer to
D2.5 for more information on the different stages):

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 40

• “Status”: Either “success” or “Not Found”;

• “PreRun”: Messages generated during the Pre-Run stage;

• “Execution”: Messages generated during the Run stage;

• “PostRun”: Messages generated during Post-Run stage.

If the query is not successful, the response contains a 404 error.

Table 18: API for obtaining the logs generated in the execution of an experiment specified by “id”

Get Logs

Method GET

Endpoint /experiment/:id/logs

Request Headers None

Request Body None

Response

200 The query was successful. The response will contain a JSON containing all log mes-

sages.

404 Indicates that the connection to the Experiment Coordinator has not been possible.

4.4.1.2 Get Descriptor API

With this API it is possible to obtain the descriptor that was used to define the experiment, identified by its id.
The API documentation is summarised in Table 19. The response for this API contains a copy of the Experiment
Descriptor (see D3.2) that was used to define the execution of the experiment, or a 404 error, if the query is not
successful.

Table 19: API for obtaining the experiment descriptor for the experiment specified by “id”

Get Descriptor API

Method GET

Endpoint /experiment/:id/descriptor

Request Headers None

Request Body None

Response

200 The query was successful. The response will contain the Experiment Descriptor for

this experiment.

404 Indicates that the connection to the Experiment Coordinator has not been possible.

4.4.2 Analytics Engine – Analytics Aggregator – 5G-EPICENTRE Portal

The 5G-EPICENTRE platform includes the Analytics Engine module, which is in charge of collecting and analysing
data coming from the infrastructure and from the vertical applications under test. The module performs KPI
calculation on experimental data, statistical analysis and Artificial Intelligence (AI)-based functionalities, such as
anomaly detection.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 41

According to the 5G-EPICENTRE standard validation methodology (described in deliverable D1.6 “Experiment
evaluation strategy and experimentation plan”), KPI calculation is performed on several measurements collected
over a specified number of iterations. It integrates a statistical analysis service, which provides indicators of the
overall experiment (i.e., minimum, maximum, median, standard deviation and quartiles). The outputs of the An-
alytics Engine are then used by the 5G-EPICENTRE Portal, to provide a visual representation of the experimenta-
tion results.

This upstream information flow corresponds to the orchestration described in D3.2 and is integrated within the
platform by means of asynchronous messaging communication based on the MQTT protocol and a RabbitMQ
message-oriented middleware. The orchestration of this flow is illustrated in Figure 14.

Figure 14: 5G-EPICENTRE Upstream Information Flow orchestration

4.4.2.1 Publisher – Analytics Engine information flow

The Publisher dispatches messages containing network and experiment metrics towards the Analytics Engine
components at each testbed using an asynchronous communication mode. The interface implements an MQTT
client for the exchange of messages including a JSON payload. Table 20 below lists the information flow ex-
changed between the Publisher and the Analytics Engine during the metrics publishing operation.

Table 20: Asynchronous information flow exchanged between the Publisher and the Analytics Engine

Publisher routed messages consumed by the Analytics Engine

Method Publish

Direction Publisher → Analytics Engine

Message standard MQTT

Message format

category [String] REQUIRED

The category of the metrics the Publisher sends to the Analytics engine, e.g., “5g_net-

work” (network measurement); “experiment” (experiment measurements).

testbed_id [Integer] REQUIRED

Vertical
Application
Component

Queue C

Testbed
Components

RabbitMQ
Message Broker

Queue B
publish

Publisher

subscribe

publish

subscribe

Infrastructure Layer (e.g., UMA) Back-end Layer (UMA)

Analytics
Engine

Analytics
Aggregator

Queue D

publish

subscribe

Other Testbeds

Queue E
5G-EPICENTRE
Portal Backend

publish

Front-end Layer

subscribe

5G-EPICENTRE
Portal Frontend

Reports API

subscribe

publish

RabbitMQ Message Broker

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 42

The testbed identifier (as specified in the federation) where the metrics are coming from.

scenario_id [Integer] OPTIONAL

The specific scenario for which metrics are collected.

use_case_id [Integer] OPTIONAL

The specific use case for which metrics are collected.

experiment_id [Integer] OPTIONAL

The specific experiment for which metrics are collected.

netapp_id [String] OPTIONAL

The specific vertical system under test, for which metrics are collected.

device_id [String] OPTIONAL

The identifier of the UE providing the metrics.

data [Object] REQUIRED

Array of data blocks containing collected measurements. These data blocks will include

a set of mandatory fields (e.g., type, timestamp, origin, etc.) and custom fields (e.g., key-

value pairs from native metrics).

4.4.2.2 Analytics Engine – Analytics Aggregator information flow

The Analytics Engine dispatches messages containing various types of data (calculated KPIs, detected anomalies,
statistics over experiments/infrastructure metrics and specific Network Application metrics – see Section 4.5.2)
towards the Analytics Aggregator module deployed at the Back-end Layer via a dedicated queue. The interface
between the modules implements an MQTT client for the exchange of messages including a JSON payload. Table
21 below lists the information flow exchanged between the Analytics Engine and the Analytics Aggregator.

Table 21: Asynchronous information flow exchanged between the Analytics Engine and the Analytics Aggregator

Analytics Engine routed messages consumed by the Analytics Aggregator

Method Publish

Direction Analytics Engine → Analytics Aggregator

Message standard MQTT

Message format

category [String] REQUIRED

The category of the metrics the Publisher sends to the Analytics engine, e.g., “5g_net-

work” (network measurement); “experiment” (experiment measurements).

testbed_id [Integer] REQUIRED

The testbed identifier (as specified in the federation) where the metrics are coming from.

scenario_id [Integer] OPTIONAL

The specific scenario for which metrics are collected.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 43

use_case_id [Integer] OPTIONAL

The specific use case for which metrics are collected.

experiment_id [Integer] OPTIONAL

The specific experiment for which metrics are collected.

netapp_id [String] OPTIONAL

The specific vertical system under test, for which metrics are collected.

device_id [String] OPTIONAL

The identifier of the UE providing the metrics.

data [Object] REQUIRED

Array of data blocks containing collected measurements. These data blocks will include

a set of mandatory fields (e.g., type, timestamp, origin, etc.) and custom fields (e.g., key-

value pairs from native metrics).

type [String] REQUIRED

If ‘params’, the message contains statistics on measurements coming from the testbed

infrastructure. If ‘kpis’, the message contains KPIs calculated for the experiments. If

‘anomalies’, the message contains detected anomalies. Finally, if ‘hspf’, the message con-

tains metrics coming from the Network Intrusion & Detection Network Application (see

Section 4.5.2).

The Analytics Aggregator dispatches messages received from the Analytics Engine instances on all the testbeds
towards the 5G-EPICENTRE Portal Backend via a dedicated queue. The interface between the modules imple-
ments an MQTT client for the exchange of messages including a JSON payload (see also D3.2). The information
flow exchanged between the Analytics Aggregator and the Portal Backend is the one described in Table 21.

4.5 Platform Network Applications integration

Whilst scheduling an experiment, the 5G-EPICENTRE platform optionally exposes platform Network Applications
for exerting control over network control plane functions, testbed entities and (security) policies. Each Network
Application creates additional, optional parameters in the experiment descriptor, declaring specification for de-
ploying additional Helm charts alongside the vertical application one. Thereby, experimenters can easily and
effortlessly configure the network to fit their needs during the experiment execution. For a complete list of avail-
able Network Applications, Network and Application Functions, see D4.2 “Network functions implementation”.
With use of these tools, developers can easily and effortlessly chain their application to a variety of pre-deployed
services offered to them, as well as configure the network to fit their needs during the experiment execution. In
the below paragraphs, we elaborate on the integration of the D1.4-listed ‘Platform Network Applications’. This
refers to:

• Prioritising traffic flows and/or guarantee QoS (Configurator Network Application, Section 4.5.1);

• Detecting and reacting to outside malicious interference (Network Intrusion Detection Network Appli-
cation, Section 4.5.2);

• Obtaining custom visual reports of experimenter-specific KPIs directly on the Portal (Analytics Services
Network Application, Section 4.5.3);

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 44

4.5.1 Configurator and Network Configuration Dashboard

The Northbound Configuration Dashboard (NCD) is a network application specifically designed to empower ex-
perimenters with the ability to request and configure specific Quality of Service (QoS) parameters based on the
5QI (5G QoS Indicator) standards for running their experiments. The NCD consumes the Npcf_PolicyAuthoriza-
tion Service APIs3, that are exposed by the testbed 5G Core components.

The approach on mapping of request body parameters is to map the selected 5QI value to the ‘afAppId’ in re-

quest body, e.g., ‘afAppId = Id_X’ for 5QI X. Testbed partners will then map the afAppId value with specific net-

work configurations on the testbed.

4.5.2 Network Intrusion & Detection

The Holistic Security and Privacy Framework (HSPF) corresponds to the security approach developed in the con-
text of 5G-EPICENTRE, and aims at providing security to any Vertical, or Network Application being executed in
a K8s environment (see D2.7 for further details). This Network Application (Network Intrusion & Detection) has
been integrated with several 5G-EPICENTRE components, as described hereafter.

Table 22 presents the reporting message sent by the Network Intrusion & Detection Network Application com-
ponents to the Analytics Engine components every time a classification routine is executed. Two similar messages
are sent: one reporting on the number of total flows and another on the number of malicious flows detected.

Table 22: Network Intrusion & Detection Network Application report message schema (left) and example (right).

1 { 1 {

2 “category”: “String”, 2 “category”: “experiment”,

3 “testbed_id”: “Number”, 3 “testbed_id”: 1,

4 “netapp_id”: “String”, 4 “netapp_id”: “hspf_netapp”,

5 “data”: [5 “data”: [

6 { 6 {

7 “type”: “String”, 7 “type”: “malicious_flows”,

8 “origin”: “String”, 8 “origin”: “main_data_server”,

9 “value”: “Number”, 9 “value”: 15,

10 “network_application”: “String”, 10 “network_application”: “UC4”,

11 “micro_service”: “String”, 11 “micro_service”: “message-broker”,

12 “hspf_agent_id”: “String”, 12 “hspf_agent_id”: “UC4-message-broker”,

13 “timestamp”: “Number”, 13 “timestamp”: 1687532092599,

14 } 14 }

15] 15]

16 } 16 }

As with any other Network Application messages (i.e., KPI messages), all the HSPF messages are published to
the application topic of the Publisher component, then consumed by the Analytics Engine, and ultimately reach
the Portal, where the implemented visualization tools represent the underlying values (see also D3.2).

Table 23 provides further information on the message content, by identifying the possible values and some ob-
servations for each of the fields.

3 https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_Poli-
cyAuthorization.yaml

https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_PolicyAuthorization.yaml
https://jdegre.github.io/editor/?url=https://raw.githubusercontent.com/jdegre/5GC_APIs/master/TS29514_Npcf_PolicyAuthorization.yaml

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 45

Table 23: HSPF message fields - possible values and observations

Field Possible values Observations

category “experiment” This field is required for the Publisher to be able to han-

dle these messages.

testbed_id [1,2,3,4] This value is used to identify the testbed where the HSPF

components are being executed.

netapp_id “hspf_netapp” This field allows the remaining 5G-EPICENTRE compo-
nents to clearly identify the origin of this messages. This
value has been agreed with the respective partners.

data.type [“malicious_flows”,

“total_flows”]

This field represents the type of traffic that the message

reports on.

data.origin “main_data_server” This field is part of the mandatory fields of the “experi-

ment” kind of messages, as previously defined (namely

in D4.1).

data.value [0-∞] This value corresponds to the number of flows that the

message reports on.

data.network_application “UC[0-8]”

“TP[0-∞]”

Used to identify the underlying UC. May also be used to

identify a third-party experimenter solution.

data.micro_service “microservice_name” Identifies the micro-service that the HSPF components

are protecting.

data.hspf_agent_id “UC[0-8]-micro-

service_name”

“TP[0-∞]-micro-

service_name”

Field used to uniquely identify the HSPF agent originat-

ing the respective message.

data.timestamp <timestamp_value> UNIX format timestamp used to identify the origin time

of the message.

Figure 15 provides a high-level overview of the interaction between an arbitrary Vertical, or Network Application;
the Network Intrusion & Detection Network Application; and the 5G-EPICENTRE components. This Figure dis-
plays the User Equipment (UEs) and custom solutions of a generic Use Case (UC), or third-party experimenter’s
vertical application, their interaction with the K8s cluster (located in one of the four 5G-EPICENTRE testbeds) and
how the services of the aforementioned solution are monitored and protected by the HSPF components. The
HSPF then generates reporting information, which is shared with the Analytics Engine and the Portal.

Additional information and more messages can be reported by the HSPF components, as described in D2.7.

4.5.3 Analytics

The vertical application can consume the APIs exposed by the Analytics Network Application, in order to sub-
scribe to the aforementioned (see Section 4.4.2) services for KPI calculation and statistical analysis.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 46

Figure 15: UCx, HSPF/Network Intrusion & Detection Network Application and 5G-EPICENTRE components.

Additional information and message examples will be described in D2.6 “5G-EPICENTRE Analytics Engine”.

4.5.3.1 Subscription API

This API is used to send a subscription request for the analytics services to the Analytics Network Application,
and provide basic information for KPI calculation. The API documentation is summarised in Table 24. The re-
sponse for this API contains the subscription id of the request. If the request is not successful, the response
contains the corresponding error code and message.

Table 24: API for subscribing the analytics service based on the content of a KPI descriptor

Subscription

Method POST

Endpoint /kpi_service_subscribe

Request Headers None

Request Body

descriptor [Object] REQUIRED

A JSON structure exchanged between the subscriber and the Analytics Network Applica-

tion, to request KPI calculation and statistical services for the set of measurements speci-

fied in the JSON. It contains specific information about the testbed_id, the experiment_id,

the netapp_id and the list of measurements to be collected during the experiment (exam-

ples and more details will be provided in D2.6). For each measurement to be used for KPI

calculation, according to the standard methodology (see D1.6), the JSON specifies the ex-

pected number of iterations, the number of measurements per iteration, and (optionally)

the “upgradable” and “optimal” thresholds.

Response

200 The subscription was accepted. The response will contain the status “ok” and the

subscription_id.

400 The format of the descriptor is not valid.

500 The server cannot process the request for an unknown reason.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 47

4.5.3.2 Delete Subscription API

This API is used to delete the subscription to the Analytics services. The API documentation is summarized in
Table 25. If the request is not successful, the response contains the corresponding error code and message.

Table 25: API for deleting the subscription to the analytics services identified by “subscription_id”

Delete Subscription

Method GET

Endpoint /kpi_service_delete/:subscription_id

Request Headers None

Request Body None

Response
200 The deletion was successful.

400 The subscription_id was not found.

 500 The server cannot process the request for an unknown reason.

4.5.3.3 Get Subscription API

This API is used to retrieve the information associated with “subscription_id”. The API documentation is summa-
rised in Table 26. The response will contain the descriptor of the subscription, a JSON structure containing the
information about the measurements associated with the provided subscription_id. If the request is not success-
ful, the response contains the corresponding error code and message.

Table 26: API for returning the descriptor associated with “subscription_id”

Get Subscription

Method GET

Endpoint /kpi_service_get/:subscription_id

Request Headers None

Request Body None

Response

200 The query was successful. The response will contain the information associated with

“subscription_id”, structured in a JSON format.

404 “subscription_id” not found.

500 The server cannot process the request for an unknown reason.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 48

5 Conclusions

This deliverable has elaborated on the final version of the 5G-EPICENTRE integrated experimentation facility,
describing its component interactions in terms of platform usage scenarios. In addition, the deliverable has de-
mystified the implementation details on how to achieve cross-testbed resource aggregation, orchestration and
synchronization under a typical Karmada control plane architecture.

The document has elaborated on the core information flow streams (from top-to-bottom and bottom-up) which
enables it to address key functional requirements (listed in D1.3 and D1.4), whilst enabling the technical partners
to attain a common understanding and groundwork for how components come together to form the whole en-
visioned platform.

During the project period M19-M30 (i.e., since D4.4) significant progress has been achieved in terms of both
individual developments and integration, whereby, because of the modular approach to the integration, the
technical components of the project have easily been re-framed to fit external developments to the project (most
notably, the new Network Application co-definition with other ICT-41 projects). 5G-EPICENTRE now fully con-
templates 5G innovations for PPDR through the Network Applications development paradigm described in the
latest 5G-PPP Network Application white papers (version 1, September 2022 and version 2, 2023 – to appear).

Specifically, the 5G-EPICENTRE experimentation facility offers complete support, and an implementation para-
digm of the ‘Hybrid’ network application interaction approach, allowing verticals to exploit enablers for ad-
vanced service operations; usability of the 5G capabilities; and adjustment of networks for PPDR needs. Draw-
ing on the concrete reference architecture for an experimentation platform for interactions between the vertical
and the testbed operators (D1.4), a successful demonstration of the envisioned platform was achieved in M30.
Through this paradigm, different 5G standalone system configurations, each with integrated support for a K8s
management environment, were federated over Karmada, achieving higher availability of services. To the best
of our knowledge, and given that Karmada, as a solution has evolved in tandem to the 5G-EPICENTRE lifetime
(Karmada v1.0.0 was released in December 2021 – M12 of the project), this is one of the first implementations
of 5G testbed resource aggregation under a uniform K8s management system.

The goal of this report is to deliver on the final integrated vision of the 5G-EPICENTRE interconnected modules,
and thus carry on with the technical integration work necessary to support third-party experimentation (in WP5),
as well as undertake any component interface, or functionalities refinement, in accordance with those needs.
Any such action shall be reported in D4.7.

D4.5 5G-EPICENTRE experimentation facility final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 49

References

[1] Karmada: Open, Multi-Cloud, Multi-Cluster Kubernetes Orchestration. Available at: https://github.com/kar
mada-io/karmada.

[2] Tabatabaeimehr, F., Khalili, H. Requena, M., Kahvazadeh, S., & Mangues-Bafalluy, J. (2023, July). Dynamic
service placement in 6G multi-cloud scenarios. In 23rd International Conference on Transparent Optical Net-
works (ICTON 2023). Available at https://icton2023.upb.ro/icton-2023-proceedings/.

[3] Gokhale, S., Poosarla, R., Tikar, S., Gunjawate, S., Hajare, A., Deshpande, S., et al. (2021, September). Creating
helm charts to ease deployment of enterprise application and its related services in kubernetes. In 2021
International Conference on Computing, Communication and Green Engineering (CCGE) (pp. 1-5). IEEE. doi:
https://doi.org/10.1109/CCGE50943.2021.9776450

https://github.com/karmada-io/karmada
https://github.com/karmada-io/karmada
https://icton2023.upb.ro/icton-2023-proceedings/
https://doi.org/10.1109/CCGE50943.2021.9776450

