

This project has received funding from the European Union's Horizon 2020 In-
novation Action programme under Grant Agreement No 101016521.

www.5gepicentre.eu

5G ExPerimentation Infrastructure hosting Cloud-nativE
Netapps for public proTection and disaster RElief

Innovation Action – ICT-41-2020 - 5G PPP – 5G

Innovations for verticals with third party services

D4.7: Integration, Verification and Testing Report

final version

Delivery date: January 2024

Dissemination level: Public

Project Title: 5G-EPICENTRE - 5G ExPerimentation Infrastructure hosting Cloud-nativE Netapps for pub-

lic proTection and disaster RElief

Duration: 1 January 2021 – 31 December 2023

Project URL https://www.5gepicentre.eu/

Ref. Ares(2024)745772 - 31/01/2024

https://www.5gepicentre.eu/

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 2

Document Information

Deliverable D4.7: Integration, Verification and Testing Report final version

Work Package WP4: Platform integration and VNF development

Task(s) T4.4: End-to-end platform integration activities

T4.5: Lab testing, prototyping and validation

Type Report

Dissemination Level Public

Due Date M34, October 31, 2023

Submission Date M37, January 31, 2022 (Amendment)

Document Lead Konstantinos C. Apostolakis (FORTH)

Contributors Stefania Stamou (FORTH)

Anna Maria Spagnolo (IST)

Luigi D'Addona (IST)

Jorge Marquez Ortega (UMA)

Almudena Díaz Zayas (UMA)

Fatemehsadat Tabatabaeimehr (CTTC)

Internal Review Anna Maria Spagnolo (IST)

Luigi D'Addona (IST)

Elvina Gindullina (HPE)

Disclaimer: This document reflects only the author's view and the European Commission is not responsible for

any use that may be made of the information it contains. This material is the copyright of 5G-EPICENTRE consor-

tium parties, and may not be reproduced or copied without permission. The commercial use of any information

contained in this document may require a license from the proprietor of that information.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 3

Document history

Version Date Changes Contributor(s)

V0.1 01/12/2023 Initial deliverable structure Konstantinos Apostolakis (FORTH)

V0.2 14/12/2023
Template content preparation referring to
the platform architectural elements identi-
fied last in D1.4, distribution to all partners.

Konstantinos Apostolakis (FORTH)

V0.3 18/12/2023
Input text for the integration and testing of
the 5G-EPICENTRE Portal

Konstantinos Apostolakis (FORTH)

Stefania Stamou (FORTH)

V0.4 09/01/2024
Input text for the integration and testing of
the Analytics Engine, and Analytics Aggrega-
tor.

Anna Maria Spagnolo (IST)

Luigi D'Addona (IST)

V0.5 11/01/2024
Input text for the integration and testing of
the Experiment Coordinator and 5G Traffic
Simulator.

Jorge Marquez Ortega (UMA)

Almudena Díaz Zayas (UMA)

V0.6 18/01/2024
Input text for the integration and testing of
the Karmada Federation layer and Service
placement plug-in.

Fatemehsadat Tabatabaeimehr
(CTTC)

V1.0 25/01/2024
Internal Review Version, final formatting
and proof-reading (quality check).

Konstantinos Apostolakis (FORTH)

V1.1 30/01/2024 1st version with suggested revisions Elvina Gindullina (HPE)

V1.2 30/01/2024 2nd version with suggested revisions
Anna Maria Spagnolo (IST)

Luigi D'Addona (IST)

V2.0 31/01/2024 Final version for submission Konstantinos Apostolakis (FORTH)

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 4

Project Partners

Logo Partner Country Short name

AIRBUS DS SLC France ADS

NOVA TELECOMMUNICATIONS SINGLE MEMBER
S.A.

Greece NOVA

Altice Labs SA Portugal ALB

Fraunhofer-Gesellschaft zur Förderung der
angewandten Forschung e.V.

Germany HHI

Foundation for Research and Technology Hellas Greece FORTH

Universidad de Malaga Spain UMA

Centre Tecnològic de Telecomunicacions de Cata-
lunya

Spain CTTC

Istella SpA Italy IST

One Source Consultoria Informatica LDA Portugal ONE

Iquadrat Informatica SL Spain IQU

Nemergent Solutions S.L. Spain NEM

 EBOS Technologies Limited Cyprus EBOS

Athonet SRL (Participation ended) Italy ATH

RedZinc Services Limited Ireland RZ

OptoPrecision GmbH Germany OPTO

Youbiquo SRL Italy YBQ

ORamaVR SA Switzerland ORAMA

Hewlett-Packard Italiana Srl Italy HPE

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 5

List of abbreviations

Abbreviation Definition

5GTSM 5G Traffic Simulation Manager

AF Application Function

API Application Programming Interface

CLI Command Line Interface

CORS Cross-Origin Resource Sharing

DL Deep Learning

GA Grant Agreement

HSPF Holistic Security and Privacy Framework

ILP Integer Linear Programming

IP Internet Protocol

JSON JavaScript Object Notation

K8s Kubernetes

KPI Key Performance Indicator

MQTT Message Queueing Telemetry Transport

NF Network Function

NS Network Service

QoE Quality of Experience

QoS Quality of Service

RBAC Role-Based Access Control

REST Representational State Transfer

TCP Transmission Control Protocol

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 6

TM Technical Manager

UC Use Case

(G)UI (Graphical) User Interface

VPN Virtual Private Network

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 7

Executive summary

The present report summarizes the activities of the 5G-EPICENTRE Consortium with respect to system integra-
tion (Task 4.4) and testing (Task 4.5), undertaken for the period M24-M37 (i.e., after delivery of the preceding
report D4.6: “Integration, Verification and Testing Report preliminary version”). It follows up on prior documen-
tation on the integrated prototype (D4.5: “5G-EPICENTRE experimentation facility final version”), and constitutes
a reporting of the final roadmaps and activities for carrying out the system integration and corresponding testing
activities throughout the aforementioned timeframe. The content in this report refers to the platform architec-
tural elements identified in D1.4: “Experimentation requirements and architecture specification final version”,
and particularly reports on integration and testing with respect to the interfaces that partners responsible for
the different interdependent components have defined. These are either individually reported in the compo-
nent’s standalone deliverable, or in the API reference documentation available in D4.5.

The delivery of this report concludes the partners’ activities in Work Package (WP) 4, and constitutes a compen-
dium of the integration work with regards to implementing the 5G-EPICENTRE experiment e-ordering platform.
It hence accounts how the partners developed a novel aggregator of four independent (i.e., characterized by
different 5G standalone implementation and technologies) testbed facilities, federated under a typical Karmada
control plane architecture, and specifically exposed for Public Protection and Disaster Relief (PPDR) vertical sys-
tem experimentation.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 8

Table of Contents

List of Figures ... 10
List of Tables .. 11
1 Introduction ... 13

1.1 Mapping of project’s outputs ... 13
2 5G-EPICENTRE system integration report ... 15

2.1 5G-EPICENTRE Portal .. 15
2.1.1 Functional description ... 15
2.1.2 Information flow .. 15
2.1.3 Interdependencies with other components .. 16
2.1.4 Integration roadmap ... 17
2.1.5 Issues encountered and roadmap deviations ... 19

2.2 Experiment Coordinator ... 19
2.2.1 Functional description ... 19
2.2.2 Information flow .. 19
2.2.3 Interdependencies with other components .. 20
2.2.4 Integration roadmap ... 21
2.2.5 Issues encountered and roadmap deviations ... 23

2.3 5G Traffic Simulator .. 23
2.3.1 Functional description ... 23
2.3.2 Information flow .. 23
2.3.3 Interdependencies with other components .. 24
2.3.4 Integration roadmap ... 25
2.3.5 Issues encountered and roadmap deviations ... 26

2.4 Karmada (Federation Layer) ... 26
2.4.1 Functional description ... 26
2.4.2 Information flow .. 27
2.4.3 Interdependencies with other components .. 27
2.4.4 Integration roadmap ... 28

2.5 Service placement .. 29
2.5.1 Functional description ... 29
2.5.2 Information flow .. 29
2.5.3 Interdependencies with other components .. 30
2.5.4 Integration roadmap ... 30
2.5.5 Issues encountered and roadmap deviations ... 30

2.6 Analytics Engine .. 30
2.6.1 Functional description ... 30
2.6.2 Information flow .. 31
2.6.3 Interdependencies with other components .. 31
2.6.4 Integration roadmap ... 32
2.6.5 Issues encountered and roadmap deviations ... 33

2.7 Analytics Aggregator .. 33
2.7.1 Functional description ... 33
2.7.2 Information flow .. 33
2.7.3 Interdependencies with other components .. 34
2.7.4 Integration roadmap ... 34
2.7.5 Issues encountered and roadmap deviations ... 35

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 9

3 5G-EPICENTRE system testing and validation report .. 36
3.1 5G-EPICENTRE Portal functionality validation .. 37

3.1.1 Network Service Repository integration testing ... 37
3.1.2 Experiment Coordinator integration tests .. 39
3.1.3 Analytics Aggregator integration tests .. 41

3.2 Experiment Coordinator functionality validation ... 41
3.2.1 5GTSM integration testing .. 42
3.2.2 Publisher integration testing ... 42
3.2.3 Network Service Repository integration tests ... 44
3.2.4 Karmada integration testing .. 44

3.3 5G Traffic Simulator functionality validation ... 45
3.3.1 Testbed integration testing ... 45
3.3.2 Publisher integration testing ... 46
3.3.3 5GTSM – Remote iPerf Agent integration testing ... 47

3.4 Karmada (Federation layer) functionality validation ... 48
3.4.1 Kubernetes testbed cluster integration testing .. 48

3.5 Service placement functionality validation .. 49
3.5.1 Karmada (Federation layer) integration testing .. 49

3.6 Analytics Engine functionality validation ... 50
3.6.1 Publisher integration testing ... 50

3.7 Analytics Aggregator functionality validation .. 51
3.7.1 KPI Monitor integration testing ... 51
3.7.2 QoS/QoE Monitor integration tests .. 52

4 Conclusions .. 54
References ... 55

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 10

List of Figures

Figure 1: 5G-EPICENTRE Portal data flow. ... 16

Figure 2: Experiment Coordinator data flow. .. 20

Figure 3: 5G Traffic Simulator data flow.. 24

Figure 4: Karmada Federation Layer data flow. .. 27

Figure 5: Service placement data flow. ... 29

Figure 6: Analytics Engine data flow. .. 31

Figure 7: Analytics Aggregator data flow. ... 33

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 11

List of Tables

Table 1: Adherence to 5G-EPICENTRE’s GA Tasks’ Descriptions ... 13

Table 2: 5G-EPICENTRE Portal connection with other 5G-EPICENTRE components ... 16

Table 3: 5G-EPICENTRE Portal – Network Service Repository final integration report .. 17

Table 4: 5G-EPICENTRE Portal – Experiment Coordinator final integration report .. 18

Table 5: 5G-EPICENTRE Portal – Analytics Aggregator final integration report .. 18

Table 6: Experiment Coordinator connection with other 5G-EPICENTRE components .. 20

Table 7: Experiment Coordinator – 5GTSM final integration report ... 21

Table 8: Experiment Coordinator – Publisher final integration report ... 22

Table 9: Experiment Coordinator – Network Service Repository final integration report 22

Table 10: Experiment Coordinator – Karmada Federation Layer final integration report 22

Table 11: 5G Traffic Simulator connection with other 5G-EPICENTRE components .. 24

Table 12: 5GTSM connection with other 5G-EPICENTRE components ... 25

Table 13: 5GTSM – Testbeds final integration report ... 25

Table 14: Remote iPerf agents – Publisher final integration report ... 25

Table 15: 5GTSM – Remote iPerf agents final integration report ... 26

Table 16: Karmada connection with other 5G-EPICENTRE components .. 28

Table 17: Karmada – Testbed K8s cluster final integration report.. 28

Table 18: Service placement plugin connection with other components ... 30

Table 19: Service placement– Karmada final integration report .. 30

Table 22: Analytics Engine connection with other 5G-EPICENTRE components .. 31

Table 23: Analytics Engine – Publisher final integration report .. 32

Table 24: Analytics Aggregator connection with other 5G-EPICENTRE components ... 34

Table 25: Aggregator – KPI Monitor final integration report .. 34

Table 26: Aggregator – QoS/QoE Monitor final integration report .. 35

Table 27: Test matrix listing the types of functional testing carried out, and reported in this Section. 36

Table 28: 5G-EPICENTRE Portal – Network Service Repository integration testing. ... 36

Table 29: 5G-EPICENTRE Portal – Network Service Repository integration testing. ... 37

Table 30: 5G-EPICENTRE Portal – Network Service Repository integration testing fail cases. 39

Table 31: 5G-EPICENTRE Portal – Experiment Coordinator integration testing. .. 39

Table 32: 5G-EPICENTRE Portal – Experiment Coordinator integration testing fail cases. 40

Table 33: 5G-EPICENTRE Portal – Analytics Aggregator integration testing. .. 41

Table 34: 5G-EPICENTRE Portal – Analytics Aggregator integration testing fail cases. ... 41

Table 35: Experiment Coordinator – 5GTSM integration testing. ... 42

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 12

Table 36: Experiment Coordinator – 5GTSM integration testing fail cases. ... 42

Table 37: Experiment Coordinator – Publisher integration testing. ... 43

Table 38: Experiment Coordinator – Publisher integration testing fail cases. .. 43

Table 39: Experiment Coordinator – Network Service Repository integration testing. .. 44

Table 40: Experiment Coordinator – Network Service Repository integration testing fails cases........................ 44

Table 41: Experiment Coordinator – Karmada integration testing. .. 44

Table 42: Experiment Coordinator – Karmada integration testing fail cases. .. 45

Table 43: 5GTSM – Testbed integration testing. ... 45

Table 44: Remote iPerf agent – Publisher integration testing. ... 46

Table 45: Remote iPerf agent – Publisher integration testing fail cases. .. 46

Table 46: 5GTSM – Remote iPerf Agent(s) integration testing. .. 47

Table 47: 5GTSM – Remote iPerf Agent(s) integration testing fail cases. ... 47

Table 48: Cross-testbed federation – Testbeds’ Kubernetes’s cluster integration testing. 48

Table 49: Service placement plugin – Karmada (Federation layer) integration testing. 49

Table 50: Service placement – Karmada integration testing fail cases. .. 50

Table 53: Analytics Driver – Publisher integration testing. ... 50

Table 54: Analytics Driver – Publisher integration testing fail cases. .. 51

Table 55: Aggregator – KPI Monitor integration testing. .. 51

Table 56: Aggregator – KPI Monitor integration testing fail cases. ... 52

Table 57: Aggregator – QoS/QoE Monitor integration testing. .. 52

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 13

1 Introduction

This deliverable represents the final report on 5G-EPICENTRE partner activities regarding system integration,
testing and validation. All reported items have been carried out in the context of Tasks T4.4: “End-to-end plat-
form integration activities” and T4.5: “Lab testing, prototyping and validation”, and correspond to the timeline
between delivery of the precursor deliverable D4.6 “Integration, Verification and Testing Report preliminary ver-
sion” (M24) and the present document’s re-planned delivery date (M37). All activities reported in the present
document have been coordinated under the supervision of the Technical Manager (TM) of the project.

Reflecting the Integration roadmap established in D4.1: “Integration plan and framework”, and re-iterating from
D4.6, system integration (which shall henceforth be referred to simply as integration) in the context of 5G-EPI-
CENTRE Task T4.4, refers to the process of interlinking different technological components toward facilitating a
uniform system (i.e., the 5G-EPICENTRE Platform). Following up on the final platform integration overview, re-
ported in D4.5 (Section 2 in that document), the means by which integration is addressed is through the defini-
tion and implementation of well-defined interfaces (i.e., with concretely established inputs and outputs). Such
interfaces follow the consumer-producer paradigm, allowing a component to either expose, or consume meth-
ods exposed by other components, so that the exchange of data can be facilitated through pre-specified sets of
parameters. Through the 5G-EPICENTRE integration approach that follows the microservices architecture para-
digm, two components (services) are considered to be “integrated” when either one service is able to consume
the interfaces exposed by the other.

As the penultimate document on the project-developed 5G-EPICENTRE platform and its development / integra-
tion activities, the present deliverable departs from the structure of D4.6 (and the more general processes de-
scribed therein), and hence shall report on the technical content describing the different components and their
interdependencies, together with information on the roadmap to integrate the component within the overall
5G-EPICENTRE developed solution. The document will further describe the undertaken actions and results re-
garding system integration testing, i.e., testing carried out to verify integrity and consistency of the platform
components’ intercommunication. The majority of this information reflect the contents reported in deliverable
D4.5: “5G-EPICENTRE experimentation facility final version” (M30). Whereas that document provides the full
APIs’ reference documentation, this deliverable emphasizes the actual 5G-EPICENTRE partners’ activities in the
context of Tasks 4.5 and 4.6, including the plans and roadmaps established to execute the activities therein.

The rest of the deliverable is structured as follows: Section 2 presents an overview of the approach to integration
for each of the 5G-EPICENTRE platform’s interdependent components. Section 3 then describes the integration
testing activities, recounting followed procedures, test methodology for each integration method, and brief in-
sight into the test outcomes, which led to overall system improvements. Finally, Section 4 concludes the deliv-
erable.

1.1 Mapping of project’s outputs

The purpose of this Section is to map 5G-EPICENTRE Grant Agreement (GA) commitments, within the formal Task
description, against the project’s respective outputs and work performed.

Table 1: Adherence to 5G-EPICENTRE’s GA Tasks’ Descriptions

5G-EPICENTRE Task Respective Document Chapters Justification

T4.4: End-to-end platform integra-
tion activities

Section 2.x.1 For each component (Section 2.x),
this Section provides a brief de-
scription, and elaborates on the

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 14

“This Task will deal with the inte-
gration of the modules developed
in the technical WPs, according to
the system architecture (T1.3) and
use case requirements (T1.2)”.

“[…]. Integration will hence be ad-
dressed using vertical methods in
order to have functional entities
and horizontal approaches so as
to facilitate any necessary custom-
ization of the platform, which will
iteratively integrate components
resulting from technical WPs to
deliver incremental releases of the
5G-EPICENTRE platform”.

component’s role in the overall 5G-
EPICENTRE platform.

Section 2.x.2 This Section briefly describes the
information flowing through the
component.

Section 2.x.3 This Section briefly lists all interde-
pendencies of the component with
other components in the architec-
ture.

Section 2.x.4 This Section describes the integra-
tion roadmap followed for the in-
tegration between it, and each in-
terdependent component.

Section 2.x.5 This Section informs on whether
minor, or serious issues (especially
such that made partners divert
from the roadmap) were encoun-
tered, describing them, and
providing the countermeasure(s)
that was/were applied.

T4.5: Lab testing, prototyping and
validation

“The main aim of this task is to
manage testing and validation of
the separate components to be in-
tegrated into the final system. This
will involve specifying a testing
framework, which supports auto-
mated unit-testing (e.g. black box,
white box, integration) and guide-
lines for testing to be used for indi-
vidual component development.”.

 “[…]. The Task will specify high-
level tests for the components to
be integrated in T4.4, as well as in-
tegration tests and method of vali-
dating the integrated system”.

Section 3.x For each component, this Section
describes the approach to testing
the component. It reports on the
ways in which the APIs were
tested. It further reports whether
those tests were exploratory (i.e.,
send a request and check that the
response is correct, black-box or
white-box); usability tests (i.e., em-
ulate the use of the system by a
user); or ad-hoc tests (check for
loopholes).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 15

2 5G-EPICENTRE system integration report

The purpose of this Section is to report on the integration outcomes for each of the 5G-EPICENTRE individual
components, describing their established connections, data flow, integration roadmap and a report on any prob-
lems encountered during integration. Relevant deliverables (and thereby, their corresponding Tasks and WPs)
are listed, toward guiding interested readers to the latest API documentation referenced for each interdepend-
ency, i.e., their available endpoints, methods, headers, parameters and expected responses. This information,
generated in Task T4.4, has been crucial for defining the system integration testing workflow in Task T4.5 (re-
ported in Section 3 of this document).

This report is to be considered as complementary to D4.5, and refers to the system information described in
Section 4 of that document.

2.1 5G-EPICENTRE Portal

2.1.1 Functional description

The 5G-EPICENTRE Portal is a user-facing web application that allows users to interact with the 5G-EPICENTRE
platform, offering different usage scenarios for: i) delegating network, or vertical application artefacts (Helm
charts) to the platform repository, for use and re-use in experimentation activities; ii) reserving resources for an
experiment execution, by specifying desired execution timeline; iii) regulating how an experiment is deployed,
which artefacts to be installed in the available testbeds’ Kubernetes clusters, as well as chained network appli-
cations that should execute in parallel; and iv) collect and visualize measurements from an experiment carried
over the platform. The complete functional description of this component is elaborated in deliverable D3.2 “5G
EPICENTRE Front-end components”.

2.1.2 Information flow

The 5G-EPICENTRE Portal interfaces with the Network Service Repository, thereby operating as a web-based,
graphical UI (GUI) client, to view all available Helm charts that can be deployed on top of the 5G-EPICENTRE
federated testbeds infrastructure, as well as perform simple actions, such as adding to, replacing, or deleting a
resource (provided the user has the necessary rights to these actions). The interaction enables the Portal users
to inspect, and subsequently, specify which artefacts to deploy during an experiment execution request, i.e.,
vertical application Helm charts uploaded by experimenters themselves, as well as network application/network
function (NF)/application function (AF) Helm charts to incorporate into the experiment execution request, of-
fered by the 5G-EPICENTRE Consortium vertical representatives (i.e., use case owners). These are then forwarded
to the Experiment Coordinator component through the experiment descriptor exchange structure over the Ex-
periment Run API endpoint. At any given time, the Portal can be used by any user with a proper role-based access
control (RBAC) authentication token (i.e., either the experimenter themselves, or the testbed administrator of
the platform elected to host the experiment), to request a scheduled experiment be cancelled.

Finally, during an experiment execution, the 5G-EPICENTRE Platform receives real-time information on experi-
ment analytics, including pre-specified and user-specific Key Performance Indicators (KPIs), traffic parameters
and detected anomalies. The information is structured in rich graphical representations, and stored in the Por-
tal’s own database for keeping a persistent record of the experiment execution for later use.

The graphical representation of the described data flow is illustrated in Figure 1.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 16

Figure 1: 5G-EPICENTRE Portal data flow.

2.1.3 Interdependencies with other components

The 5G-EPICENTRE Portal (a component developed by FORTH) shares interdependencies with the following 5G-
EPICENTRE functional entities: Experiment Coordinator (UMA); Network Service Repository (IQU); Analytics Ag-
gregator (IST). Table 2 below, provides an overview of the connections established with other platform functional
elements, and briefly elaborates on their interfaces.

Table 2: 5G-EPICENTRE Portal connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

Experiment
Coordinator

TCP/IP REST JSON The 5G-EPICENTRE Portal consumes the
‘Experiment Run’ and ‘Experiment Can-
cel’ APIs exposed by the Experiment Co-
ordinator, to either request the execu-
tion of an experiment on a pre-desig-
nated point in time or cancel a particu-
lar experiment execution request iden-
tified by a unique identifier. Minimal
user interface (UI) dashboards have
been implemented, which enable en-
riching the experiment descriptor pay-
load (exchanged between the Portal
and the Experiment Coordinator over
the Experiment Run endpoint), with all
the necessary deployment parameters
to enable activation (i.e., deployment)
and chaining of pre-specified network

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 17

applications with an experiment re-
quest involving vertical-specific arte-
facts. The final documentation of these
APIs, can be found in deliverable D2.5
“5G-EPICENTRE Experiment execution”,
whereas these chainings will be re-
ported in detail in the revised version of
deliverable D4.2 “Network functions im-
plementation”.

Network Service
Repository

TCP/IP REST JSON The 5G-EPICENTRE Portal consumes all
APIs exposed by the Network Service
Repository’s OpenAPI server, which en-
able operations, such as viewing of all
filenames in the repository (to allow
user to browse and select desired Helm
charts to deploy), retrieval of Helm
chart metadata (similarly, to display ar-
tefact information to the Portal user),
deletion of a file, and uploading of a file
in the Network Service Repository. The
final documentation of these APIs can
be found in deliverable D4.3 “5G-EPI-
CENTRE Experiment execution”.

Analytics
Aggregator

TCP/IP MQTT JSON The 5G-EPICENTRE Portal is subscribed
to the topic exchange queue published
to by the Analytics Aggregator, thereby
asynchronously receiving payloads cor-
responding to the processed analytics
information generated in real-time for a
particular experiment under test (spec-
ified by its unique identifier). The final
documentation of this API can be found
in deliverable D2.6 “5G-EPICENTRE An-
alytics Engine”.

2.1.4 Integration roadmap

Table 3 below, describes the integration roadmap followed for the integration between the 5G-EPICENTRE Portal
and the Network Service Repository, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 3: 5G-EPICENTRE Portal – Network Service Repository final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of Network Service Repository OpenAPI server (IQU).

• Testing of each API via mock services endpoints (IQU, FORTH).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 18

• Refinement, finalization, and deployment at UMA (integration with
actual/real endpoints, UMA, IQU).

• System integration test (UMA, FORTH).

Integration testing Section 3.1.1

Table 4 similarly describes the roadmap followed for the integration between the 5G-EPICENTRE Portal and the
Experiment Coordinator, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 4: 5G-EPICENTRE Portal – Experiment Coordinator final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of the first version of the experiment descriptor data
model for 5G-EPICENTRE (refinement of prior descriptor template
from 5GENESIS, UMA)

• Development of northbound Experiment Coordinator APIs exposed
towards the 5G-EPICENTRE Portal (UMA).

• Testing of each API via mock services endpoints (UMA).

• Integration with actual/real endpoints (UMA)

• Testing of APIs via established endpoints (UMA, FORTH).

• First system integration test (UMA, FORTH).

• Development of refined version of the experiment descriptor data
model for 5G-EPICENTRE (integration of Network Intrusion Detection
network application parameters, UMA, ONE).

• Second system integration test (UMA, ONE, FORTH).

• Development of final version of the experiment descriptor data
model for 5G-EPICENTRE (integration of additional network applica-
tion parameters, UMA, EBOS, IST).

• Development of refined final version of the experiment descriptor
data model for 5G-EPICENTRE (integration of network application,
application function, network function parameters from UC owners,
UMA, UC owners) [pending].

• Final system integration test (UMA, FORTH, EBOS, IST, UC Owners)
[pending].

Integration testing Section 3.1.2

Finally, Table 5 describes the roadmap followed for the integration between the 5G-EPICENTRE Portal and the
Analytics Aggregator, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 5: 5G-EPICENTRE Portal – Analytics Aggregator final integration report

Roadmap Description

Integration format RabbitMQ MQTT broker topic exchange integration.

Integration activities • Setup RabbitMQ MQTT broker (UMA, IST)

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 19

• Development of the first version of the Analytics Aggregator data
model (IST)

• Integration with actual/real endpoints (UMA, IST).

• Testing of API via established endpoints using mock data (IST, ADS,
UMA, FORTH).

• Development of refined version of the analytics aggregator data
model (IST, ONE).

• System integration test (IST, UMA, ONE, FORTH).

• Development of refined final version of the analytics aggregator data
model (IST, UC owners).

• Final system integration test (IST, UMA, FORTH, UC Owners).

Integration testing Section 3.1.3

2.1.5 Issues encountered and roadmap deviations

Minor issues were encountered and dealt with effectively, without significantly affecting the integration
roadmaps in each case. Some service unavailability issues were encountered due to the need to re-integrate APIs
with different real endpoints, at UMA side, without however affecting the integration procedure (requests were
simply re-routed to the newest endpoints communicated). Regarding the Network Service Repository integra-
tion, changes in the Jfrog pricing model forced IQU to self-host the Jfrog repo in a private server (similarly requir-
ing a re-integration with new real endpoints).

2.2 Experiment Coordinator

2.2.1 Functional description

The Experiment Coordinator is the element inside the 5G-EPICENTRE architecture, in charge of coordinating the
life cycle of the experiments running on the platform. The Experiment Coordinator can: (1) schedule the execu-
tion and deployment of use cases from both first (project Use Cases – UCs) and third parties; (2) deploy the
mentioned uses cases in any of the 4 testbeds that belong to the platform (through the federated Karmada
synchronization layer); (3) deploy the Network Intrusion Detection Network Application through the Holistic Se-
curity and Privacy Framework (HSPF) module (see D2.8 “Cloud-native Security Specifications Final Version”); as
well as (4) execute the traffic generation in any of the integrated testbeds, through the 5G Traffic Simulation
Manager (5GTSM).

2.2.2 Information flow

The Experiment Coordinator receives the necessary information from the Portal, in the form of a descriptor, to
download the Helm chart indicated from the Network Service Repository. Once downloaded, the Helm chart is
deployed in the selected testbed and namespace through the Karmada federation layer, and the “experiment_id”
is sent back to the Portal. Once the Helm chart is deployed, the Publisher of the corresponding testbed will be
updated with the “experiment_id” and the “netapp_id” parameters, associated with the experiment for its cor-
rect identification in a RabbitMQ queue (the measurements will be published by the vertical in a RabbitMQ ex-
change, and from there, they are forwarded to the Analytics Engine). The Experiment Coordinator can also initi-
ate the traffic generation in the desired testbed, by means of the 5GTSM instance deployed in it. This traffic will
be generated according to the profile (light, moderate, disaster) indicated in the experiment descriptor. Finally,
if selected, the security-oriented Network Application for intrusion detection (i.e., HSPF) will be deployed on the
selected testbed, and with the chosen microservices (as indicated in the experiment descriptor).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 20

The graphical representation of the described data flow is illustrated in Figure 2.

Figure 2: Experiment Coordinator data flow.

2.2.3 Interdependencies with other components

The Experiment Coordinator (a component developed by UMA) has interdependencies with the following ele-
ments of the platform: 5GTSM (UMA), Publisher (UMA), Network Service Repository (IQU) and Karmada federa-
tion layer (CTTC). Table 6 below, provides an overview of the connections established with other platform func-
tional elements, and briefly elaborates on their interfaces.

Table 6: Experiment Coordinator connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

5GTSM TCP/IP REST JSON The Experiment Coordinator consumes
the start and stop endpoints of the
5GTSM, which in turn accesses the cor-
responding endpoints of the remote iP-
erf agents (see D2.5 for a more detailed

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 21

description). It also consumes end-
points for aggregation and deletion of
relevant information from the remote
iPerf agents.

Publisher TCP/IP REST API This Integration with the Publisher is
done to provide experiments’ metadata
to it. In this way, the Experiment Coor-
dinator can communicate the “experi-
ment_id” and “netapp_id” fields of the
experiment to be executed to the Pub-
lisher. This in turn allows the identifica-
tion of the measurements to be pub-
lished from the experiment in a Rab-
bitMQ exchange.

Network Service
Repository

TCP/IP

REST API The Experiment Coordinator can re-
trieve Helm chart from the Network
Service Repository using its REST API.
This allows it to obtain the deployment
file specified by the Portal via the de-
scriptor, enabling the deployment of its
contents on the chosen testbed." or
something like that.

Karmada
Federation Layer

TCP/IP REST API For the deployment of the different use
cases in each of the testbeds, the Exper-
iment Coordinator makes use of the
Karmada federation layer. By modifica-
tions in the propagation policies files in-
cluded in each deployment use case,
the Experiment Coordinator is able to
select the correct testbed and
namespace.

2.2.4 Integration roadmap

Table 7 below, describes the integration roadmap followed for the integration between the Experiment Coordi-
nator and the 5GTSM, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 7: Experiment Coordinator – 5GTSM final integration report

Roadmap Description

Integration format REST API and RabbitMQ MQTT broker topic exchange integration.

Integration activities • Development of the 5GTSM (UMA).

• Development of the Remote iPerf agents used by 5GTSM (UMA).

• Integration of the 5GTSM in each testbed belonging to the platform
(UMA, ALB, CTTC, HHI).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 22

• Testing of traffic generation in each testbed and its correct publica-
tion in the corresponding RabbitMQ queue (UMA, all testbeds).

• System integration test (UMA, all testbeds).

Integration testing Section 3.2.1

Table 8 below, describes the integration roadmap followed for the integration between the Experiment Coordi-
nator and the Publisher, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 8: Experiment Coordinator – Publisher final integration report

Roadmap Description

Integration format REST API and RabbitMQ MQTT broker topic exchange integration.

Integration activities • Development of the Publisher (UMA).

• Integration of the Publisher in each testbed belonging to the platform
as well as the RabbitMQ broker (UMA, all testbeds).

• Testing the correct publication of the KPIs of an experiment in the
RabbitMQ queue with the correct “experiment_id” and “netapp_id”
(UMA, all testbeds).

• System integration test (UMA, all testbeds).

Integration testing Section 3.2.2

Table 9 below, describes the integration roadmap followed for the integration between the Experiment Coordi-
nator and the Network Service Repository, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 9: Experiment Coordinator – Network Service Repository final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of the OpenAPI server (IQU).

• Integration of the OpenAPI in the backend layer hosted at UMA.

• Testing of each API via mock services endpoints (IQU, UMA).

• System integration test (UMA, FORTH).

Integration testing Section 3.2.3

Finally, Table 10 below, describes the integration roadmap followed for the integration between the Experiment
Coordinator and the Karmada Federation Layer, along with listing 5G-EPICENTRE partner responsibilities in each
step.

Table 10: Experiment Coordinator – Karmada Federation Layer final integration report

Roadmap Description

Integration format REST API integration.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 23

Integration activities • Development of the Karmada federation layer (CTTC).

• Integration of the different clusters in Karmada (CTTC).

• Installation of the necessary tool to manage Karmada such as ku-
bectl1, karmadactl2, etc. (CTTC).

• Implementation of the necessary certificates and configurations for
the use of Karmada (UMA).

• Testing of resources propagation through the different testbeds that
are part of Karmada (UMA, all testbed owners).

Integration testing Section 3.2.4

2.2.5 Issues encountered and roadmap deviations

With respect to the Publisher, small modifications had to be made, due to the addition of new fields in the struc-
ture of the messages throughout the project, but these modifications have not affected the roadmap established
for its integration. Regarding the Network Service Repository, it has been necessary to deal with the problems
of the JFrog repository pricing model (previously mentioned in Section 2.1.5). The integration with Karmada has
had to deal with the different paradigms adopted by each testbed, when implementing their clusters. In addition,
small modifications have had to be made in each use case, in order to indicate which resource propagation policy
should be followed, depending on which testbed is targeted.

2.3 5G Traffic Simulator

2.3.1 Functional description

Under the term “5G Traffic Simulator”, we refer to a sub-system within the 5G-EPICENTRE architecture, in charge
of generating simulated 5G traffic in the platform. It is composed of two functional elements, i.e., the 5GTSM
and the Remote iPerf Agents.

The 5GTSM is a simple interface, whose function is to orchestrate the remote iPerf Agents under its domain. This
component maintains information about the agents it controls (e.g., address, id, etc.), and sends REST API re-
quests to them. The remote iPerf Agents are the components in charge of traffic generation, using the iPerf tool3
(both version 2 and version 3). They are able to act as client or server, and generate traffic with the desired
specifications. They are also able to publish such measurements about network traffic in the RabbitMQ queue,
indicated in the established format.

Ideally, the 5GTSM will be maintained as a static, centralized element within the testbed, and Agents will act
within containers dynamically.

2.3.2 Information flow

The 5GTSM is instantiated on each testbed as a service, alongside the Publisher. When the testbed receives the
request to generate traffic, it sends to the remote iPerf Agents (instantiated in the testbed in the form of docker
containers) the request to generate traffic with the specified configuration. Finally, the result of the measure-
ments about the generated traffic are published in the RabbitMQ queue of each testbed, through the Publisher
component.

1 https://kubernetes.io/docs/reference/kubectl/
2 https://karmada.io/docs/next/reference/karmadactl/karmadactl-commands/karmadactl_index/
3 https://iperf.fr/

https://kubernetes.io/docs/reference/kubectl/
https://karmada.io/docs/next/reference/karmadactl/karmadactl-commands/karmadactl_index/
https://iperf.fr/

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 24

The graphical representation of the described 5G Traffic Simulator internal and external data flows, is illustrated
in Figure 3.

Figure 3: 5G Traffic Simulator data flow.

2.3.3 Interdependencies with other components

The 5G Traffic Simulator (a system developed by UMA) is instantiated in each testbed federated under the 5G-
EPICENTRE platform. It has interdependencies with the testbed on which it is hosted, and the Publisher that is
hosted on the corresponding testbed (UMA). Furthermore, its internal architecture entails interdependencies
between the 5GTSM and the remote iPerf Agents it controls. Table 11 provides an overview of the connections
established between the 5G Traffic Simulator (as a sub-system of the 5G-EPICENTRE platform) with its interde-
pendent components, briefly elaborating on their interfaces. Internal integration points occurring within the 5G
Traffic Simulator are listed in Table 12.

Table 11: 5G Traffic Simulator connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

Testbed TCP/IP REST JSON The 5GTSM exposes endpoints for start-
ing the remote iPerf Agents already in-
stantiated in the testbed. The Agent is
identified by an id, previously stored in
the 5GTSM, as well as its address and
parameters. The testbed is also capable
of adding new remote iPerf Agents, as
well as removing them from the
5GTSM.

Publisher TCP/IP MQTT JSON The integration with the Publisher is
done through the remote iPerf Agents.
These Agents capture the console lines
resulting from traffic generation, and
send them to the Publisher, which is in
charge of the publication of those mes-
sages in the RabbitMQ queue in the cor-
responding testbed.

Publisher

5GTSM

Infrastructure layer

Remote iPerf
Agent

RabbitMQ

5G Traffic Simulator

Remote iPerf
Agent

Remote iPerf
Agent

Actions,
Configuration

Traffic data

Exp. traffic
metrics

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 25

Table 12: 5GTSM connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

Remote iPerf
Agents

TCP/IP

REST API The integration of the 5GTSM with the
remote iPerf Agents is done by means
of a POST request, from the 5GTSM con-
taining a JSON with the necessary con-
figuration, to the /Iperf endpoint of
each Agent. This JSON contains infor-
mation about the iPerf parameters that
the Agent will use (used to establish the
client or server role, among others), as
well as the Agent’s credentials.

2.3.4 Integration roadmap

Table 13 below, describes the integration roadmap followed for the integration between the 5G Traffic Simulator
sub-system and the testbeds, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 13: 5GTSM – Testbeds final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of the 5GTSM (UMA).

• Integration of the 5GTSM in each testbed belonging to the platform
(UMA, all testbed owners).

• Testing the addition and removal of Agents in the 5GTSM (UMA).

• Testing of REST API calls to Agents (UMA).

• System integration test (UMA, all testbed owners).

Integration testing Section 3.3.1

Table 14 similarly describes the integration roadmap followed for the integration between the Remote iPerf
Agents and the Publisher, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 14: Remote iPerf agents – Publisher final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of the Remote iPerf Agents (UMA).

• Integration of the Agents in the testbeds (UMA, all testbed owners).

• Testing of the communication between the Agents acting as client,
and the agents acting as server (UMA).

• System integration test (UMA, all testbed owners).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 26

Integration testing Section 3.3.2

Finally, Table 15 below, describes the integration roadmap followed for the integration between the 5GTSM and
the remote iPerf Agents (internal integration for the 5G Traffic Simulator sub-system), along with listing 5G-
EPICENTRE partner responsibilities in each step.

Table 15: 5GTSM – Remote iPerf agents final integration report

Roadmap Description

Integration format REST API integration.

Integration activities • Development of 5GTSM (UMA).

• Development of the Remote iPerf Agents (UMA).

• Correct identification of agents by the 5GTSM (UMA).

• Testing of the correct sending and reception of the parameters for
traffic generation by the 5GTSM and the Agents (UMA).

• Establishment of clients and servers between Agents by the 5GTSM,
and generation of traffic between them (UMA).

• System integration test (UMA, all testbed owners).

Integration testing Section 3.3.3

2.3.5 Issues encountered and roadmap deviations

Regarding the remote iPerf Agents, some problems have been encountered when handling the format provided
by the iPerf tool in its version 2 and 3. In order not to affect the roadmap, it was decided to program the agents
to support both formats, i.e., to select the version of the tool to be used (this can be done when instantiating the
Agents).

Another issue encountered with the Agents is the need to create “ephemeral” Agents, since they should not save
the state from one experiment to another. For this reason, we have chosen to integrate the agents in the form
of docker containers. Therefore, it is possible to add the desired configuration when instantiating them in the
selected testbed.

Finally, a problem has been encountered when trying to run the Agents on mobile devices. To solve this, we have
made use of an app developed by UMA, that will be executed through the OpenTAP4 tool, and which has the
necessary plugins for the publication of messages in the RabbitMQ queue, in the correct format.

2.4 Karmada (Federation Layer)

2.4.1 Functional description

The 5G-EPICENTRE Federation Layer, leveraging Karmada as its core component, orchestrates distributed re-
sources across multiple Kubernetes (K8s) clusters in various testbeds. Karmada is essential for managing cluster
lifecycles and resources, and functions as a multi-cluster management solution. It enables seamless operation
and management of cloud-native applications across geographically distributed environments, without the need

4 https://opentap.io/

https://opentap.io/

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 27

for changes to the applications. Each testbed is treated as a point-of-presence, with the Federation Layer facili-
tating integrated and unified management through standard APIs.

2.4.2 Information flow

As previously mentioned, the Experiment Coordinator triggers the Karmada API server to deploy the Helm chart
of the Network Service (NS) to the designated cluster. Upon receiving the deployment manifest, Karmada's bind-
ing controllers generate the appropriate binding object. Then Karmada’s scheduler processes the workload,
based on active plugin(s). Note that, the service placement component within 5G-EPICENTRE is comprehensively
detailed in D2.4, and is beyond the scope of this Section.

Once Karmada identifies the target testbed and cluster, it creates the deployment manifest. Following this, the
API Server of the K8s cluster in the targeted testbed is invoked, to initiate the deployment. The selection of the
desired node within the K8s cluster is managed internally by K8s.

The graphical representation of the described data flow is illustrated in Figure 4.

Figure 4: Karmada Federation Layer data flow.

2.4.3 Interdependencies with other components

For seamless deployment from the Portal to the testbed cluster, cross-testbed federation uses a two-tiered in-
terconnection system. The upper layer involves the Experiment Coordinator consuming the Karmada API for
deploying services. Meanwhile, the lower layer focuses on integrating with each individual testbed.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 28

As discussed in D4.5, the federation integrates four geographically dispersed testbeds within the project. Each
testbed has K8s cluster(s), each possessing different physical characteristics. These clusters are connected to
Karmada in a 'push mode', wherein Karmada actively monitors the clusters' statuses, and deploys manifests. This
interaction predominantly occurs through Karmada's API Server and its controllers, which maintain direct com-
munication with the K8s API servers of the affiliated clusters.

This architecture adopts a centralized approach, with the Karmada control plane exerting direct influence, and
prompt responsiveness over the member clusters. The federation layer is deployed at the CTTC testbed, and to
ensure the smooth coordination and communication between CTTC and each remote testbed, a Virtual Private
Network (VPN) is established with each partner. The control plane is tasked with the distribution of workloads,
enforcement of policies, and the maintenance of the intended state across federated resources in each cluster.

Table 16 below, provides an overview of the connections established with other platform functional elements,
and briefly elaborates on their interfaces.

Table 16: Karmada connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

Testbed K8s
cluster(s)

TCP/IP REST YAML/JSON The K8s cluster(s) in each testbed is reg-
istered, as member cluster, to the fed-
eration. Therefore, the status of each
cluster is regularly updated within Kar-
mada. Additionally, Karmada propa-
gates the deployments across the mem-
ber clusters.

2.4.4 Integration roadmap

Table 17 below, describes the integration roadmap followed for the integration between the Karmada Federa-
tion Layer and the K8s cluster in the 5G-EPICENTRE testbeds, along with listing 5G-EPICENTRE partner responsi-
bilities in each step.

Table 17: Karmada – Testbed K8s cluster final integration report

Roadmap Description

Integration format Karmada API integration.

Integration activities • Set up Karmada control plane in CTTC testbed (CTTC).

• Configure necessary credentials of each testbeds’ K8s cluster(s), for
authentication and authorization (CTTC, UMA, ALB, HHI).

• Set up a secure communication channel via proper VPN connections
between Karmada and each of the cluster testbeds (UMA, ALB, HHI).

• Join testbeds’ cluster(s) to the federation environment (CTTC).

• Conduct checks to ensure that each Kubernetes cluster has correctly
joined the Karmada control plane (CTTC).

Integration testing Section 3.4.1

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 29

2.5 Service placement

2.5.1 Functional description

The 5G-EPICENTRE service placement module is in charge of selecting the best testbed’s cluster to host the ser-
vice, while the service requirement is fulfilled. For the final integration of service placement, the measurement
approach has been streamlined, by evaluating both latency and available CPU resources in the topper compo-
nent, which allows more integrated and holistic understanding of system performance.

The module resides in the cross-testbed federation layer in the form of newly drafted plugin for the Karmada
scheduler, to process the workload based to optimization approach (more details can be found in deliverable
D2.4). Because of this dedicated development, the integration and testing of this plug-in are treated in separate
(to Karmada) Sections.

2.5.2 Information flow

Upon receipt of the deployment request by Karmada from the Experiment Coordinator (or an admin/user in test
scenarios), Karmada's internal components initiate the processing of the workload. As the process unfolds, the
Scheduler is activated, which in turn triggers the cluster resource plugin. The plugin extracts the necessary infor-
mation from Karmada’s APIs. For the specific latency-aware scenario, the measured latency to the cloud cluster
is measured periodically by a metrics tracker (see D2.4), and published via RabbitMQ in the ‘application’ topic
exchange. The plugin can subscribe to the topic and pull the metrics.

Specifically, a metrics tracker (referenced in D2.4) periodically measures latency to the cloud cluster and pub-
lishes this data to the 'application' topic on a RabbitMQ topic exchange queue. The plugin subscribes to this topic
to access the metric data. After gathering all essential information, the plugin makes an HTTP request to the
Optimizer, which houses an ILP solver. This solver calculates the most suitable cluster for hosting the service in
question. Then, the Optimizer returns the target cluster of the service at request, to the plugin for the subse-
quent steps.

The graphical representation of the described data flow is illustrated in Figure 5.

Figure 5: Service placement data flow.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 30

2.5.3 Interdependencies with other components

The service placement module, developed using the plugin approach as new feature for the Karmada federation,
has connectivity with the Karamad API server. Table 18 below, provides an overview of the connections estab-
lished with other functional elements, and briefly elaborates on their interfaces.

Table 18: Service placement plugin connection with other components

Component Connection API protocol Data exchange Comments

Karmada TCP/IP REST JSON The service placement is developed as a
new plugin (cluster resource) for Kar-
mada’s internal scheduler component
in the federation layer. The plugin con-
sumes the APIs provided by Karmada
system to access the necessary infor-
mation related to the member clusters.

2.5.4 Integration roadmap

Table 19 below, describes the integration roadmap followed for the integration between the service placement
plugin and Karmada, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 19: Service placement– Karmada final integration report

Roadmap Description

Integration format REST API integration

Integration activities • Deployment of the Karmada as cross-testbed federation (CTTC).

• Development the first version of cluster resource plugin (CTTC).

• Testing service deployment (CTTC, all testbeds).

Integration testing Section 3.5.1

2.5.5 Issues encountered and roadmap deviations

Initially, an incompatibility of Filter interface between the developed plugin and the new release of Karmada was

identified, leading to errors during the image creation process for the Scheduler. The plugin has been updated

to adapt with the new interface.

2.6 Analytics Engine

2.6.1 Functional description

The Analytics Engine is composed of three key modules deployed at each testbed: the Analytics Driver, the KPI
Monitor, and the Quality of Service/Quality of Experience (QoS/QoE) Monitor. The Analytics Driver collects and
pre-processes data generated by infrastructure and vertical applications, validates the data, and records it into
an InfluxDB. The KPI Monitor and the QoS/QoE Monitor then process this data for KPI calculation and Deep
Learning (DL)-based analysis for anomaly detection. The results of the data analytics tasks, performed at the

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 31

testbed level, are then provided to the Analytics Aggregator module, deployed at the Back-end Layer. The com-
plete functional description of the Analytics Engine is elaborated in deliverable D2.6 “5G-EPICENTRE Analytics
Engine”.

2.6.2 Information flow

When an experiment is conducted on the 5G-EPICENTRE Platform, the Analytics Driver, which is part of the An-
alytics Engine, subscribes to the Publisher’s message queue and receives both metrics and metadata. After vali-
dating the data, the Analytics Driver further publishes metrics to both the KPI Monitor and the QoS/QoE Monitor,
which are other internal modules of the Analytics Engine. These modules are responsible for calculating and
evaluating KPIs and identifying anomalies on the network metrics, based on the measurements. The analytics
results are then provided to the Analytics Aggregator at the Back-end Layer.

The graphical representation of the described data flow is illustrated in Figure 6.

Figure 6: Analytics Engine data flow.

2.6.3 Interdependencies with other components

The Analytics Driver, a sub-component of the Analytics Engine (developed by IST), is interconnected with the
Publisher (developed by UMA), a component present in each Testbed. The Publisher’s role is to link various met-
rics with the appropriate experiment metadata for identification, to supply data to the Analytics Engine for anal-
ysis. It uses a message broker (e.g., RabbitMQ), to publish metrics and metadata to a common topic exchange.

Table 20 below, provides an overview of the connections established by the Analytics Engine with other platform
functional elements, and briefly elaborates on their interfaces.

Table 20: Analytics Engine connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

Publisher TCP/IP MQTT JSON The Analytics Driver is subscribed to the
topic exchange queue published to by
the Publisher, thereby asynchronously

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 32

receiving payloads corresponding to the
measurements generated in real-time
for a particular experiment under test
(measurements from the vertical appli-
cations, or the network; and security re-
ports generated by the HSPF Network
Application components – see also D2.8
“Cloud-native Security Specifications Fi-
nal Version”).

Analytics
Aggregator

TCP/IP MQTT JSON The Analytics Engine components at
each testbed, publish the processed an-
alytical information (KPIs, statistics,
HSPF reports and notification of anom-
alies) to a topic exchange queue sub-
scribed to by the Analytics Aggregator.

2.6.4 Integration roadmap

Table 21 below, describes the integration roadmap followed for the integration between the Analytics Engine
modules and the Publisher at each testbed, along with listing 5G-EPICENTRE partners’ responsibilities in each
step.

Table 21: Analytics Engine – Publisher final integration report

Roadmap Description

Integration format RabbitMQ MQTT broker topic exchange integration.

Integration activities • Setup RabbitMQ MQTT broker (IST, UMA, Testbed owners).

• Development of the first version of the data model for the output of
the Publisher (IST, UMA, UC owners).

• Integration with actual/real endpoints (IST, UMA, Testbed owners).

• Testing of the communication via established endpoints using mock
data (IST, UMA, Testbed owners).

• Development of a refined version of the data model for the output of
the Publisher (IST, UMA, UC owners).

• System integration test (IST, UMA, Testbed owners).

• Development of refined final version of the data model for the output
of the Publisher (IST, UMA, UC owners).

• Final system integration test (IST, UMA, UC Owners, Testbed owners).

Integration testing Section 3.6.1

The roadmap for the integration between the components of the Analytics Engine deployed at each testbed, and
the Analytics Aggregator module deployed at the Back-end layer is described in Section 2.7.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 33

2.6.5 Issues encountered and roadmap deviations

During the integration of the Analytics Engine and the Publisher, minor challenges were encountered. However,
these were resolved without causing significant disruptions to the integration plans. The main issue involved the
need to modify the format of the messages exchanged on RabbitMQ. This change was necessary to accommo-
date more detailed information. Despite these challenges, the integration process was successfully carried out.

2.7 Analytics Aggregator

2.7.1 Functional description

The Analytics Aggregator (or simply “Aggregator”) module is an external component linked to the 5G-EPICENTRE
Analytics Engine, and which is deployed at the Back-end Layer (hosted at the UMA testbed). It is responsible for
gathering data produced by the components of the Analytics Engine, that are installed at each Testbed (i.e., part
of the Infrastructure Layer), and make them available to the 5G-EPICENTRE Portal for visualisation (in the Front-
end Layer). The complete functional description of this component is elaborated in deliverable D2.6 “5G-EPICEN-
TRE Analytics Engine”.

2.7.2 Information flow

When an experiment is conducted on the 5G-EPICENTRE Platform, the Aggregator consolidates the processed
data from both the KPI Monitor and QoS/QoE Monitor at each testbed. This data is then supplied to the Front-
end tool for visualization purposes. In more detail, the KPI Monitor forwards the calculated KPIs and statistics,
based on the measurements from the vertical applications and infrastructure probes, to the Aggregator. Concur-
rently, the QoS/QoE Monitor carries out anomaly detection on the infrastructure data, and alerts the Aggregator
about any potential anomalies that are detected.

The graphical representation of the described data flow is illustrated in Figure 7.

Figure 7: Analytics Aggregator data flow.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 34

2.7.3 Interdependencies with other components

The Analytics Aggregator (a component developed by IST) shares interdependencies with the KPI Monitor and
the QoS/QoE Monitor, which are two internal modules of the Analytics Engine deployed at each testbed; and
with the 5G-EPICENTRE Portal (see Section 2.1).

Table 22 below, provides an overview of the connections established with the other platform functional ele-
ments, and briefly elaborates on their interfaces.

Table 22: Analytics Aggregator connection with other 5G-EPICENTRE components

Component Connection API protocol Data exchange Comments

KPI Monitor TCP/IP MQTT JSON The Aggregator is subscribed to the
topic exchange queue published to by
the KPI Monitor, thereby asynchro-
nously receiving payloads correspond-
ing to the processed analytics infor-
mation generated in real-time for a par-
ticular experiment under test (KPIs from
the vertical applications or the network
infrastructure, statistics and security re-
ports generated by the HSPF).

QoS/QoE Monitor TCP/IP MQTT JSON The Aggregator is subscribed to the
topic exchange queue published to by
the QoS/QoE Monitor, thereby asyn-
chronously receiving payloads corre-
sponding to the notifications of poten-
tial anomalies detected on network
measurements.

Portal TCP/IP MQTT JSON The Aggregator publishes the processed
analytical information to a topic ex-
change queue subscribed to by the Por-
tal.

2.7.4 Integration roadmap

Table 23 below, describes the integration roadmap followed for the integration between the Aggregator and the
KPI Monitor, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 23: Aggregator – KPI Monitor final integration report

Roadmap Description

Integration format RabbitMQ MQTT broker topic exchange integration.

Integration activities • Setup RabbitMQ MQTT broker (IST, UMA).

• Development of the first version of the data model for the output of
the KPI Monitor (IST).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 35

• Integration with actual/real endpoints (IST).

• Testing of the communication via established endpoints using mock
data (IST).

• Development of a refined version of the data model for the output of
the KPI Monitor (IST).

• System integration test (IST, UMA).

• Development of refined final version of the data model for the output
of the KPI Monitor (IST, UC owners).

• Final system integration test (IST, UMA, FORTH, UC Owners, testbed
owners).

Integration testing Section 3.7.1

Table 24 similarly describes the roadmap followed for the integration between the QoS/QoE Monitor and the
Aggregator, along with listing 5G-EPICENTRE partner responsibilities in each step.

Table 24: Aggregator – QoS/QoE Monitor final integration report

Roadmap Description

Integration format RabbitMQ MQTT broker topic exchange integration.

Integration activities • Setup RabbitMQ MQTT broker (IST, UMA).

• Development of the first version of the data model for the output of
the QoS/QoE Monitor (IST).

• Integration with actual/real endpoints (IST).

• Testing of the communication via established endpoints using mock
data (IST).

• Development of a refined version of the data model for the output of
the QoS/QoE Monitor (IST).

• System integration test (IST, UMA).

• Development of refined final version of the data model for the output
of the QoS/QoE Monitor (IST).

• Final system integration test (IST, UMA, FORTH).

Integration testing Section 3.7.2

Finally, the roadmap followed for the integration between the 5G-EPICENTRE Portal and the Analytics Aggregator
is described in Section 2.1.4.

2.7.5 Issues encountered and roadmap deviations

We faced some minor challenges, but managed to resolve them without major disruptions to our integration
plans. For example, to ensure the connectivity of the Aggregator with both the Portal (deployed in the Front-
end) and the KPI Monitor and QoS/QoE Monitor (deployed in the Infrastructure Layer) it was necessary to:

1. make the Aggregator use a public Internet Protocol (IP) address (provided by UMA, where the module is
hosted);

2. adjust the network policies on the testbeds, in order to enable the KPI Monitor and QoS/QoE Monitor
to access the Aggregator RabbitMQ MQTT broker exchange.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 36

3 5G-EPICENTRE system testing and validation report

Testing and validation activities run in parallel to the iterative module integration processes with the aim to
support them, by validating component functionality at both the unit and (sub)system level. In the context of
Task 4.5, testing focuses at establishing a feedback loop with the individual Task in charge of component / service
/ module development, to ensure that testing results are used towards refining technical development and in-
troducing enhancements to the overall 5G-EPICENTRE infrastructure.

At the unit level, activities carried out in the context of Task 4.5 receive input from the 5G-EPICENTRE testing
framework elaborated in D4.4 (Section 5), which outlines the provisions in accordance to which the automated
and manual testing activities take place. At the core of the unit testing lies the test documentation (D4.6), which
in 5G-EPICENTRE has produced both a test plan document and test cases documentation, covering how tests for
individual components will be carried out to validate both components in accordance to the test plan guidelines.

At the system level, in this Section we describe the approach to the final integration and system-level tests of
each of the components elaborated in Section 2. To describe the ways in which the APIs were tested, Table 25
delivers a test matrix, which elaborates, in a unified manner, the kind of tests carried out.

Table 25: Test matrix listing the types of functional testing carried out, and reported in this Section.

Table 26: 5G-EPI-

CENTRE Portal –

Network Service

Repository integra-

tion testing.

Testing request in isolation Test a series of requests in

sequence (i.e., check that

the response of one re-

quest is used as param to

another request)

Manual testing with UI

(e.g., curl, postman, Portal)

(data integrity and con-

sistency check)

Basic positive test:
check basic (i.e., ex-
pected) functional-
ity and acceptance
criteria

Single API request with cor-
rect payload, to check that
the response is the one ex-
pected.

Chain of several API re-
quests one after another,
with each having the cor-
rect payload, to check that
the chain of requests yields
the expected behaviour.

Single API request with cor-
rect payload using a UI tool
to make/visualize the re-
quest, to check that even
different systems still be-
have as expected when in-
voking the API.

Extended positive
test: same as
above, but with ad-
ditional optional
parameters and
functionalities

Single API request tested
several times with different
correct payloads, to check
that each yields the re-
sponse expected.

Chain of several API re-
quests one after another,
with each having different
(but correct) payloads, to
check that each chain of re-
quests yields the expected
behaviour.

Single API request tested
several times with different
correct payloads using a UI
tool to make/visualize the
request, to check that even
different systems still be-
have as expected when in-
voking the API.

Negative testing:
test API with valid
or invalid input to
check graceful han-
dling of errors

Single API request with in-
correct (e.g., format is cor-
rect, but value is not cor-
rect) or invalid (wrong for-
mat of the request parame-
ters, or typo) payload, to

Chain of several API re-
quests one after another,
with one or more having in-
correct (e.g., format is cor-
rect, but value is not cor-
rect) or invalid (wrong for-

Single API request with in-
correct (e.g., format is cor-
rect, but value is not cor-
rect) or invalid (wrong for-
mat of the request parame-
ters, or typo) payload, us-

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 37

check that the API grace-
fully handles the error.

mat of the request parame-
ters, or typo) payload, to
check that the API grace-
fully handles the error.

ing a UI tool to make/visu-
alize the request and check
that the API gracefully han-
dled the error.

Destructive test-
ing: intentionally
try to break the API
e.g., send huge pay-
load)

Single API request with
anomalous payload, to
check robustness of the
API.

Chain of several API re-
quests one after another,
with one or more having
anomalous payload, to
check robustness of the
API.

Single API request with
anomalous payload, using a
UI tool to check robustness
of the API.

The following Sections present all the various test cases for the integration between components identified and
listed in Section 2. Each test case is identified in the following manner:

𝑴(.𝒎)

The 𝑀 number corresponds to the incremental number of the test case for the component. If the test resulted
in a PASS test result, only this number is listed. For every FAIL test case (until the PASS mark is achieved), the 𝑚
number is used to count the number of tries (after contingency action was taken). For each FAIL mark given, we
provide specific details to the failure encountered, its identified cause, and countermeasure applied.

3.1 5G-EPICENTRE Portal functionality validation

5G-EPICENTRE Portal validation testing has been carried out ad-hoc, by checking the developed solution for in-
tegrity and stability of interdependent component APIs integration (see Section 2.1.3). It further aimed at testing
system usability and user experience, by emulating the intended way in which the software is meant to be used
by its intended end users. A black-box testing approach was followed, by sending the requests to each API and
verifying that the expected output is received.

3.1.1 Network Service Repository integration testing

Table 27 below, describes the integration tests carried out between the 5G-EPICENTRE Portal and the Network
Service Repository, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 27: 5G-EPICENTRE Portal – Network Service Repository integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Extended positive test
of ‘Get All’ endpoint in
isolation (using a single
API call), using Postman
for data model integrity
and consistency check.

Authentication header
must be setup manually
in Postman, using the
test username and pass-
word credentials pro-
vided by IQU.

The response should
contain the list of file-
names in the repository
(200 status code).

1) PASS

2.1

2.2

Extended positive test
of ‘Get File endpoint in
isolation (using a single
API call), using Postman,

Authentication header
must be setup manually
in Postman, using the

The response should
contain the contents of
the “Chart.yaml” file
(200 status code).

1) FAIL

2) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 38

for data model integrity
and consistency check.

test username and pass-
word credentials pro-
vided by IQU.

The file must be in an
archive (e.g., .zip) file
format.

3.1

3.2

Basic positive test of
‘Get All’ endpoint in iso-
lation (using a single API
call), using 5G-EPICEN-
TRE Portal UI environ-
ment to both execute
requests via the API, and
validate the response
payload (data model in-
tegrity and consistency
check).

User must be authenti-
cated in the Portal as an
experimenter, and must
navigate to the third tab
of the “Create a New Ex-
periment” page, where
the relevant UI is availa-
ble.

The Portal should re-
ceive the list of file-
names in the response
body, and thereby con-
struct a visual list of
available artefacts in the
UI.

1) FAIL

2) PASS

4 Basic positive test of
‘Get File’ endpoint in
isolation (using a single
API call), using 5G-EPI-
CENTRE Portal UI envi-
ronment to both exe-
cute requests via the
API, and validate the re-
sponse payload (data
model integrity and con-
sistency check).

User must be authenti-
cated in the Portal as an
experimenter, and must
navigate to the third tab
of the “Create a New Ex-
periment” page, where
the relevant UI is availa-
ble.

YAML file of the Helm
chart must be in the cor-
rect format (listing ser-
vices, etc.).

The Portal should re-
ceive the contents of
the “Chart.yaml” file in
the response body, and
thereby construct a vis-
ual record of the Helm
artefact upon selection
(select metadata should
be visible in the record).

1) PASS

5 Multi-step basic positive
test of ‘Put File’ and ‘Get
All’ endpoints using 5G-
EPICENTRE Portal UI en-
vironment to execute
chain of requests via the
API, and validate the re-
sponse payload (con-
sistency check, i.e., suc-
cess of the first request
can be verified in the
second request).

User must be authenti-
cated in the Portal as an
experimenter, and must
navigate to the ‘Dele-
gate Artefact’ page, and
submit an artefact via
the UI form.

After executing the test,
and by navigating to the
third tab of the “Create
a New Experiment”
page, the user can verify
that the Helm chart up-
loaded via ‘Put File’ is
among the results re-
turned in the list of file-
names in the ‘Get All’
request response.

1) PASS

6 Multi-step basic positive
test of ‘Delete File’ and
‘Get All’ endpoints using

User must be authenti-
cated in the Portal as an
experimenter, and must

After executing the test,
and by navigating to the
third tab of the “Create

1) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 39

5G-EPICENTRE Portal UI
environment to execute
chain of requests via the
API, and validate the re-
sponse payload (con-
sistency check, i.e., suc-
cess of the first request
can be verified in the
second request).

navigate to the ‘My Ar-
tefacts’ page, and delete
a specific artefact using
the UI button provided.

a New Experiment”
page, the user can verify
that the Helm chart de-
leted via ‘Delete File’ is
no longer among the re-
sults returned in the list
of filenames in the ‘Get
All’ request response.

Problems encountered, which led to specific tests failing, are reported in Table 28.

Table 28: 5G-EPICENTRE Portal – Network Service Repository integration testing fail cases.

Test case no Failure encountered Cause Contingency

2.1 Response payload contains
wrong metadata information.

Incorrect YAML file format in
the Helm chart package be-
ing retrieved.

Ensured all Helm charts are
uploaded with specific
“Chart.yaml” file structure
(added as a prerequisite for
all ensuing tests). This proper
structure must be communi-
cated to experiment appli-
cants for their experiment ar-
tefact upload.

3.1 The request is not allowed by
the server's Cross-Origin Re-
source Sharing (CORS) config-
uration.

CORS request is missing the
required ‘Access-Control-Al-
low-Origin’ header.

Configured API server to re-
turn the HTTP headers re-
quired by the CORS standard.

3.1.2 Experiment Coordinator integration tests

Table 29 below, describes the integration tests carried out between the 5G-EPICENTRE Portal and the Experiment
Coordinator, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 29: 5G-EPICENTRE Portal – Experiment Coordinator integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Extended positive test
of ‘Experiment Run’
endpoint in isolation
(using a single API call),
using Postman for data
model integrity and con-
sistency check.

None. The response should
contain the execution id
of the experiment that
the Coordinator has
queued (200 status
code).

1) PASS

2.1

2.2

Extended positive test
of ‘Experiment Run’
endpoint in isolation

The user must first au-
thenticate in the Portal
as an experimenter, and

The Portal should redi-
rect the user to the ‘My
experiments’ page,

1) FAIL

2) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 40

(using a single API call),
using 5G-EPICENTRE
Portal UI environment
to both execute the re-
quest via the API, and
validate the response
payload (data model in-
tegrity and consistency
check).

must complete the “Cre-
ate a New Experiment”
process, and send the
request by clicking on
the submit button.

The user must then au-
thenticate in the Portal
as a testbed administra-
tor (for the correspond-
ing testbed), and must
‘accept’ the submitted
request via the review-
ing interface (see also
D3.2).

where the new experi-
ment is shown as ‘Ac-
cepted’. By checking the
browser console, the re-
turned execution id of
the experiment that the
Coordinator has
queued, should be
logged.

3 Basic positive test of ‘Ex-
periment Cancel’ end-
point in isolation (using
a single API call), using
Postman for data model
integrity and con-
sistency check.

None. The response should
contain the execution id
of the experiment that
the Coordinator has
queued (200 status
code).

1) PASS

4 Basic positive test of ‘Ex-
periment Cancel’ end-
point in isolation (using
a single API call), using
5G-EPICENTRE Portal UI
environment to both ex-
ecute the request via
the API, and validate the
response payload (data
model integrity and con-
sistency check).

The user must authenti-
cate in the Portal as ei-
ther an experimenter, or
as a testbed administra-
tor, and must navigate
to the ‘Experiments’
page where the experi-
ment can be cancelled
with the corresponding
button.

The Portal should re-
fresh the ‘My experi-
ments’ page, where the
user can verify that the
experiment is no longer
among the list entries.
By checking the browser
console, the response
code should be 200.

1) PASS

Problems encountered, which led to specific tests failing, are reported in Table 30.

Table 30: 5G-EPICENTRE Portal – Experiment Coordinator integration testing fail cases.

Test case no Failure encountered Cause Contingency

2.1 The request is not allowed by
the server's Cross-Origin Re-
source Sharing (CORS) config-
uration.

CORS request is missing the
required ‘Access-Control-Al-
low-Origin’ header.

Configured API server to re-
turn the HTTP headers re-
quired by the CORS standard.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 41

3.1.3 Analytics Aggregator integration tests

Table 31 below, describes the integration tests carried out between the 5G-EPICENTRE Portal and the Analytics
Aggregator, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 31: 5G-EPICENTRE Portal – Analytics Aggregator integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

Basic positive test of
subscription to the Rab-
bitMQ broker, for re-
ceiving mock analytics
data payloads via MQTT.

RabbitMQ must be up
and running on the host
testbed.

Some kind of metrics
generation service (serv-
ing mock data) must be
up and running on the
host testbed

Connection successfully
established. Mock data
payloads must be re-
ceived and logged in the
Portal’s backend con-
sole.

1) FAIL

2) PASS

2 Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real analytics data pay-
loads via MQTT and dis-
playing them as visual
graphs in the Experi-
ment Insights page.

RabbitMQ must be up
and running on the host
testbed.

UC must be deployed,
up and running on the
host testbed.

Analytics payloads must
be received and logged
in the Portal’s backend
console. Experiment re-
port document is cre-
ated inside the Portal’s
Mongoose database
(see D3.2). Visualization
components must be
automatically created
inside the Experiment
Insights page.

1) PASS

Problems encountered, which led to specific tests failing, are reported in Table 32.

Table 32: 5G-EPICENTRE Portal – Analytics Aggregator integration testing fail cases.

Test case no Failure encountered Cause Contingency

1.1 Connection is not estab-
lished.

The specific MQTT library im-
ported into the Portal
backend is either incompati-
ble with RabbitMQ (AMQ-
based), or has unspecified is-
sue to connect to the broker.

Replace the library.

3.2 Experiment Coordinator functionality validation

The validation of the Experiment Coordinator was performed manually. The focus was not so much to test the
correct response of the endpoints it offers (i.e., the experiment id in this case), but rather, the different configu-
rations it can execute. For this purpose, tests have been carried out with the different use cases available in each
of the associated testbeds. In addition, the correct deployment and operation of the HSPF Network Application

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 42

has been tested, as well as the correct operation of the different components that interact with the Experiment
Coordinator.

3.2.1 5GTSM integration testing

Table 33 below, describes the integration tests carried out between the Experiment Coordinator and the 5GTSM,
to verify that the former properly fulfils expected functionality with respect to this interface.

Table 33: Experiment Coordinator – 5GTSM integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

Basic positive test of
‘start’ endpoint in isola-
tion (using a single API
call), using curl and
Hoppscotch tools.

The remote iPerf agents
that will be involved in
traffic generation must
be instantiated.

The address and Id of
these agents should be
included in the 5GTSM
iperf-host.json file.

The response should es-
tablish the server and
client roles between the
remote iPerf agents in-
volved, and initiate traf-
fic generation between
them, with the chosen
parameters (200 status
code).

1)FAIL

2)PASS

2 Extended positive test
of ‘start’ endpoint in iso-
lation (using a single API
call), using Hoppscotch
for testing the possible
parameters that can be
used for the configura-
tion of the remote iPerf
agents.

The remote iPerf agents
that will be involved in
traffic generation must
be instantiated. The ad-
dress and Id of these
agents should be in-
cluded in the 5GTSM ip-
erf-host.json file.

The response should be
able to see (in the corre-
sponding RabbitMQ
queue) the traffic gener-
ation values, indicated
in the parameters estab-
lished.

2)PASS

Problems encountered, which led to specific tests failing, are reported in Table 34.

Table 34: Experiment Coordinator – 5GTSM integration testing fail cases.

Test case no Failure encountered Cause Contingency

1.1 On some platforms, traffic is
not displayed on a second-
by-second basis, instead traf-
fic is displayed at the end of
the experiment run.

Some platforms create a
buffer, to store the output of
the iPerf command and dis-
play it either when the buffer
overflows, or when the com-
mand ends.

By installing tools on the
platform that force the iPerf
command to be launched,
without using buffers.

3.2.2 Publisher integration testing

Table 35 below, describes the integration tests carried out between the Experiment Coordinator and the Pub-
lisher, to verify that the former properly fulfils expected functionality with respect to this interface.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 43

Table 35: Experiment Coordinator – Publisher integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Basic positive test of
‘Publish’ endpoint in iso-
lation (using a single API
call), Hoppscotch and
curl tools. Assignment of
the experiment id, gen-
erated by the Experi-
ment Coordinator, to
the Publisher’s
metadata related to the
experiment.

The experiment
metadata must be in-
cluded in the Publisher.

The experiment
metadata is updated
with the experiment id
provided, and the KPIs
published by the experi-
ment can be viewed in
the correct RabbitMQ
queue, with that field
assigned (200 status
code).

1)PASS

2 Extended positive test
of ‘add experiment’
endpoint in isolation
(using a single API call),
using Hoppscotch and
curl for testing the up-
dating of the possible
metadata of an experi-
ment.

The Publisher must con-
tain the experiment
metadata identified by
the “netapp_id” field.

The Publisher correctly
updates the “experi-
ment_id” field in the ex-
periment identified by
the field “netapp_id”.

1)PASS

3.1

3.2

Extended positive test
of ‘add experiment’
endpoint in isolation
(using a single API call),
using Hoppscotch and
curl, for testing the ad-
dition of the possible
metadata of an experi-
ment.

The Publisher must not
contain the metadata of
the experiment to be
added.

The Publisher adds the
new metadata of the ex-
periment in the Pub-
lisher, and publishes the
messages to the Rab-
bitMQ queue with the
correct metadata.

1)FAIL

2)PASS

Problems encountered, which led to specific tests failing, are reported in Table 36.

Table 36: Experiment Coordinator – Publisher integration testing fail cases.

Test case no Failure encountered Cause Contingency

3.1 The Publisher deletes all
stored experiments when
trying to add the metadata of
a new one.

A bug in assigning the list of
new experiments. Experi-
ments lists were processed
by reference, instead of by
value.

The bug has been identified
and fixed: the experiment list
is locked by value, and then
updated.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 44

3.2.3 Network Service Repository integration tests

Table 37 below, describes the integration tests carried out between the Experiment Coordinator and the Net-
work Services Repository, to verify that the former properly fulfils expected functionality with respect to this
interface.

Table 37: Experiment Coordinator – Network Service Repository integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

1.3

Extended positive test
of ‘Get File’ endpoint in
isolation (using a single
API call), using
Hoppscotch, for data
model integrity and con-
sistency check.

Authentication header
must be setup manually
in Postman, using the
test username and pass-
word credentials pro-
vided by IQU.

The file must be in an
archive (e.g., .zip) file
format.

The response should
contain the contents of
the “Helm-chart.zip” file
(200 status code).

1)FAIL

2)FAIL

3)PASS

Problems encountered, which led to specific tests failing, are reported in Table 38.

Table 38: Experiment Coordinator – Network Service Repository integration testing fails cases.

Test case no Failure encountered Cause Contingency

1.1 The file does not download
correctly. A corrupted ver-
sion of the file is downloaded
instead.

The file must be in .zip for-
mat and the file name must
be in the form “{file-
name}.zip”

Assert that the file needs to
have the correct format, as
well as the format of its
name.

1.2 The file is not decompressed
in a folder with name format
{filename}

The zip file does not contain
a folder with the same name
as the file (without the .zip
extension). This causes the
program to not be able to de-
compress it correctly.

Assert that the zip file needs
to contain a folder with the
same filename as the original
file.

3.2.4 Karmada integration testing

Table 39 describes the integration tests carried out between the Experiment Coordinator and the Karmada Fed-
eration Layer, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 39: Experiment Coordinator – Karmada integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

1.3

Extended positive test
of deploying use cases
in the different testbeds

The target testbed must
be attached to the Kar-
mada federation layer.

The deployment is prop-
agated in the indicated
testbed and namespace,
and works as expected.

1)FAIL

2)FAIL

3)PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 45

that make up the plat-
form, as well as the dif-
ferent namespaces that
make up the testbeds.

The namespaces must
be created on the Kar-
mada master node, and
propagated to the
joined testbeds.

Problems encountered, which led to specific tests failing, are reported in Table 40.

Table 40: Experiment Coordinator – Karmada integration testing fail cases.

Test case no Failure encountered Cause Contingency

1.1 Resources are not propa-
gated correctly to the speci-
fied testbed and namespace

An extra file called “Propaga-
tionPolicy” is needed, to indi-
cate the resource propaga-
tion policy.

The file has been added to
each Helm chart that wants
to interact with the platform,
and has been set to be de-
ployed before starting to de-
ploy the rest of resources

1.2 The resources are propa-
gated to the target testbed
and namespace, but are not
executed correctly.

The use cases do not have
the credentials of each
testbed for publishing to
their RabbitMQ queue. In ad-
dition, they do not have the
configurations of each
testbed for their dynamic
storage solutions (e.g., Stor-
ageClass)

By modifying the Values.yml
files of each Helm chart, the
credentials of the RabbitMQ
and StorageClass queues can
be dynamically set by means
of the Experiment Coordina-
tor.

3.3 5G Traffic Simulator functionality validation

The validation of the 5G Traffic Simulator has been performed both manually and automatically. In addition to
checking the correct operation of the different endpoints, several 4-hour stress tests were performed on the
different endpoints.

3.3.1 Testbed integration testing

Table 41 below, describes the integration tests carried out between the 5GTSM and the testbeds, to verify that
the former properly fulfils expected functionality with respect to this interface.

Table 41: 5GTSM – Testbed integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Extended positive test
of ‘add_iperf_agent’
endpoint in isolation
(using a single API call),
using Hoppscotch for
testing the possible pa-
rameters that can be

None. The response must con-
tain the success status
code. The file “iperf-
hosts.json” must con-
tain the credentials of

1)PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 46

used for the configura-
tion of the remote iPerf
Agents.

the newly added agent
(Status code 200).

2 Extended positive test
of ‘remove_iperf_agent’
endpoint in isolation
(using a single API call),
using Hoppscotch for
testing the possible pa-
rameters that can be
used for the configura-
tion of the remote iPerf
Agents.

The Agent’s credentials
must be found in the file
“iperf-hosts.json”

The file “iperf-
hosts.json” file should
no longer contain the
credentials of the se-
lected agent.

1)PASS

3.3.2 Publisher integration testing

Table 42 below, describes the integration tests carried out between a remote iPerf Agent and the Publisher, to
verify that the former properly fulfils expected functionality with respect to this interface.

Table 42: Remote iPerf agent – Publisher integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

Extended positive test
of ‘Publish’ endpoint in
isolation (using a single
API call), using the re-
mote iPerf Agents for
testing the publication
of KPIs related to traffic
generation.

The Publisher must have
access to the RabbitMQ
queue, and the Agents
must be able to gener-
ate traffic, and publish it
in the correct format.

The display of messages
in the RabbitMQ queue
in the correct format,
and with the correct
identification.

1)FAIL

2)PASS

Problems encountered, which led to specific tests failing, are reported in Table 43.

Table 43: Remote iPerf agent – Publisher integration testing fail cases.

Test case no Failure encountered Cause Contingency

1.1 The Publisher “loses” mes-
sages when many agents
publish messages for a long
time.

The Publisher suffers from
“overheating”, when it must
handle a large number of
messages from several
agents over a long period of
time. This happens due to
the creation of many threads
for each one of them.

Making agents publish to a
queue with topic “applica-
tion”, instead of publishing to
the Publisher’s endpoint. This
frees up endpoint load. The
Publisher will subscribe all
messages in the queue with
topic “application”, and pub-
lish them in the correct for-
mat to the specified queue,

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 47

without suffering from “over-
heating”.

3.3.3 5GTSM – Remote iPerf Agent integration testing

Table 44 below, describes the integration tests carried out between the 5GTSM and the remote iPerf Agents, to
verify that the former properly fulfils expected functionality with respect to this interface.

Table 44: 5GTSM – Remote iPerf Agent(s) integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1

Extended positive test
of ‘Iperf’ endpoint in iso-
lation (using a single API
call), using Hoppscotch
for testing the possible
parameters that can be
used for the configura-
tion of the remote iPerf
Αgents.

The remote iPerf Αgents
that will be involved in
traffic generation must
be instantiated.

The address and Id of
these Αgents should be
included in the 5GTSM
iperf-host.json file.

The response should es-
tablish the server and
client roles between the
remote iPerf Αgents in-
volved, and initiate traf-
fic generation between
them with the chosen
parameters (200 status
code).

1)PASS

2.1

2.2

Stress test on the gener-
ation of traffic between
the different instanti-
ated Agents. Tests were
carried out on different
traffic profiles for a du-
ration of 4 hours.

The agents must be in-
stantiated, and must
have a connection to
the Publisher.

The sample of results
should be reflected in
the corresponding Rab-
bitMQ queue.

1)FAIL

2)PASS

Problems encountered, which led to specific tests failing, are reported in Table 45.

Table 45: 5GTSM – Remote iPerf Agent(s) integration testing fail cases.

Test case no Failure encountered Cause Contingency

2.1 After a period of one hour,
the messages stop appearing
in the corresponding Rab-
bitMQ queue in real time. Af-
ter that period, the messages
are published in blocks, or
are completely lost.

The iPerf command uses a
system of buffers for traffic
generation. After a period of
time, these buffers become
saturated, and become sus-
ceptible of losing messages,
or generating them incor-
rectly.

Using external tools, such as
the Except5 library (in the
case of Linux), or the Winpty6
tool (in Windows), it is possi-
ble to make the iPerf tool not
use the buffers causing the
issue.

5 https://linux.die.net/man/1/unbuffer
6 https://github.com/rprichard/winpty

https://linux.die.net/man/1/unbuffer
https://github.com/rprichard/winpty

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 48

3.4 Karmada (Federation layer) functionality validation

First, we validated the correct access rights to the clusters via Karmada, which ensure that the clusters were
correctly integrated and prepared to host the resources. This involved verifying that access controls and permis-
sions were appropriately set and functioning as intended within the Karmada-managed environment as cluster
status synchronization. Additionally, the testing process included the deployment of applications using Helm
charts or NS across the clusters. This was achieved by using the ‘kubectl’ command tool, alongside ‘karmadactl’,
which is a Command Line Interface (CLI) for Karmada control plan. The aim was to validate the reliability of
Karmada in managing application lifecycles within a multi-cluster setup.

3.4.1 Kubernetes testbed cluster integration testing

Table 46 below, describes the integration tests carried out between the cross-testbed federation and the
testbeds’ K8s clusters, to verify that the former properly fulfils expected functionality with respect to this inter-
face.

Table 46: Cross-testbed federation – Testbeds’ Kubernetes’s cluster integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Basic positive test of re-
trieving Karmada’s com-
ponents in isolation (us-
ing single API request),
using kubectl.

All necessary prerequi-
sites, including the cor-
rect versions of Go, Ku-
bectl, and Karmadactl,
are available, and veri-
fied for compatibility.

All the components of
Karmada are in the run-
ning status.

1)PASS

2 Basic positive test of
‘ping’ endpoint in isola-
tion (using a single API
call), using ping com-
mand.

VPN is established be-
tween CTTC testbed and
each remote testbed in
UMA, ALB, and HHI.

Successful ping to Ku-
bernetes cluster in
testbeds UMA, ALB, and
HHI.

1)PASS

3 Basic positive test of re-
trieving registered Clus-
ter object in isolation
(using single API re-
quest), using kubectl.

Testcase number1.

Testcase number 2.

The necessary creden-
tials foraccessing all re-
mote testbeds’ clus-
ter(s) must be available.

All testbeds’ cluster(s)
are correctly registered.

1)PASS

4 Basic positive test of Ku-
bernetes resource de-
ployment in isolation
(using a single API call),
using kubectl and kar-
madactl commands.

The propagation policy
object is prepared.

The corresponding
HELM/NS YAML files for
deployment are pre-
pared.

The HELM/NS with cor-
responding propagation
policy are sent to Kar-
mada.

The HELM/NS is de-
ployed successfully in
the cluster specified in
propagation policy.

1)PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 49

5 Basic positive test of K8s
resource deployment in
isolation (using a single
API call), using kubectl
and karmadactl com-
mands.

The Preconditions in
testcase 4.

The desired namespace
in the specific testbed’s
cluster should be cre-
ated (ALB).

The HELM/NS with cor-
responding propagation
policy are sent to Kar-
mada.

The service is correctly
deployed in the target
namespace, in the spe-
cific cluster specified in
propagation policy.

1)PASS

3.5 Service placement functionality validation

The process of service placement involved several manual validation test steps. Since this module takes place in
Karmada, a crucial step of integrating was the development preliminary structure for the plugin, to allocate space
for incorporating essential code. All verification tests were conducted by monitoring the log messages from the
Karmada scheduler pod, and performing the cross-validation between the expected target cluster and the host
cluster for the currently deployed pod.

3.5.1 Karmada (Federation layer) integration testing

Table 47 below, describes the integration tests carried out between the service placement and Karmada, to verify
that the former properly fulfils expected functionality with respect to this interface.

Table 47: Service placement plugin – Karmada (Federation layer) integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1.1

1.2

Basic positive test of K8s
resource deployment in
isolation (using a single
API call), using kubectl
apply -f [file] command.

Since the plugin is inte-
grated in Karmada, it in-
herits all the prerequi-
site installation condi-
tions of Karmada.

Scheduler image, which
contains new plugin,
must be available and
accessible for pulling
from the repository.

Submitting YAML files of
a service and propaga-
tion policy to Karmada.

The expected outcome
from this test is to see a
running pod in the tar-
get cluster, that was
fixed for this test.

1) FAILS

2) PASS

2 Basic positive test for
the K8s client set initiali-
zation in isolation (using
several APIs call), by us-
ing authentication cre-
dential.

All the required Go li-
braries must be imple-
mented.

Network access must be
granted to K8s clusters.

The available CPU re-
sources per each mem-
ber cluster must be
shown.

1)PASS

Problems encountered, which led to specific tests failing, are reported in Table 48.

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 50

Table 48: Service placement – Karmada integration testing fail cases.

Test case no Failure encountered Cause Contingency

1.1 The pod did not deploy in the
cluster.

Incompatibility of Filter inter-
face in developed plugin and
new release of Karmada.

The interface was updated
with appropriately defined ar-
guments, followed by the cre-
ation of a new image.

3.6 Analytics Engine functionality validation

The validation of the integration between the Analytics Engine modules and the Publisher at the testbeds was
carried out using a black-box testing approach. This involved sending messages over a RabbitMQ broker ex-
change, and verifying that the received output matched the expected results.

3.6.1 Publisher integration testing

Table 49 below, describes the integration tests carried out between the Analytics Engine, more specifically the
Analytics Driver component, and the Publisher, to verify that the former properly fulfils expected functionality
with respect to this interface.

Table 49: Analytics Driver – Publisher integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Basic positive test of
subscription to the Rab-
bitMQ broker, for re-
ceiving mock data pay-
loads via MQTT from the
Publisher module.

RabbitMQ must be up
and running on the
testbed.

Some kind of metrics
generation service (serv-
ing mock data) must be
up and running on the
testbed.

Connection successfully
established. Mock data
payloads must be re-
ceived and printed in
the Analytics Driver log.

1) PASS

2 Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real data payloads via
MQTT from the Pub-
lisher, including meas-
urements about the net-
work infrastructure.

RabbitMQ must be up
and running on the
testbed.

The Analytics Driver
must be up and running
on the testbed.

Measurements from the
network infrastructure
must be available on the
testbed.

Data payloads must be
received and printed in
the Analytics Driver’s
log.

1) PASS

3.1

3.2

Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving

RabbitMQ must be up
and running on the
testbed.

Data payloads must be
received and printed in
the Analytics Driver’s
log.

1) FAIL

2) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 51

real data payloads via
MQTT from the Pub-
lisher, including meas-
urements about the ver-
tical application under
test.

The Analytics Driver
must be up and running
on the testbed.

UC must be deployed,
up and running on the
testbed.

Problems encountered, which led to specific tests failing, are reported in Table 50.

Table 50: Analytics Driver – Publisher integration testing fail cases.

Test case no Failure encountered Cause Contingency

3.1 No data received. The vertical application was
not compliant with the data
format required by the Pub-
lisher, and the collected data
was discarded.

The issue was resolved by cor-
recting the data format.

3.7 Analytics Aggregator functionality validation

The validation of the integration between the Aggregator and the Analytics Engine internal Infrastructure Layer
modules at the testbeds, was carried out using a black-box testing approach. This involved sending messages
over a RabbitMQ broker exchange, and verifying that the received output matched the expected results.

3.7.1 KPI Monitor integration testing

Table 51 below, describes the integration tests carried out between the Aggregator and the KPI Monitor at the
testbed level, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 51: Aggregator – KPI Monitor integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Basic positive test of
subscription to the Rab-
bitMQ broker, for re-
ceiving mock analytics
data payloads via MQTT
from the KPI Monitor
module deployed at
UMA testbed.

RabbitMQ must be up
and running on the
UMA testbed.

Some kind of metrics
generation service (serv-
ing mock data) must be
up and running on the
UMA testbed.

Connection successfully
established. Mock data
payloads must be re-
ceived and printed in
the Aggregator log.

1) PASS

2 Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real analytics data pay-
loads via MQTT from the

RabbitMQ must be up
and running on the
UMA testbed.

Analytics payloads must
be received and printed
in the Aggregator’s log.

1) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 52

KPI Monitor at UMA
testbed.

KPI Monitor must be up
and running on the
UMA testbed.

UC must be deployed,
up and running on the
UMA testbed.

3.1

3.2

Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real analytics data pay-
loads via MQTT from the
KPI Monitor at a differ-
ent testbed.

RabbitMQ must be up
and running on the
UMA testbed.

KPI Monitor must be up
and running on the host
testbed to be tested.

UC must be deployed,
up and running on the
host testbed.

Analytics payloads must
be received and printed
in the Aggregator’s log.

1) FAIL

2) PASS

Problems encountered, which led to specific tests failing, are reported in Table 52.

Table 52: Aggregator – KPI Monitor integration testing fail cases.

Test case no Failure encountered Cause Contingency

3.1 No data analytics received
from the testbed.

The specific KPI Monitor
hosted on the testbed was
not able to connect to the
Aggregator’s RabbitMQ
hosted at the UMA testbed.

The network issue preventing
the KPI Monitor from con-
necting to the RabbitMQ on
the UMA testbed was re-
solved by the network admin-
istrator, who enabled the
module to connect to an ex-
ternal IP.

3.7.2 QoS/QoE Monitor integration tests

Table 53 below, describes the integration tests carried out between the Aggregator and the QoS/QoE Monitor
at the testbed level, to verify that the former properly fulfils expected functionality with respect to this interface.

Table 53: Aggregator – QoS/QoE Monitor integration testing.

Test case no Test scenario and flow Preconditions Expected result Test result

1 Basic positive test of
subscription to the Rab-
bitMQ broker, for re-
ceiving mock analytics
data payloads via MQTT
from the QoS/QoE Mon-
itor module deployed at
UMA testbed.

RabbitMQ must be up
and running on the
UMA testbed.

Some kind of metrics
generation service (serv-
ing mock data) must be

Connection successfully
established. Mock data
payloads must be re-
ceived and printed in
the Aggregator’s log.

1) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 53

up and running on the
UMA testbed.

2 Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real analytics data pay-
loads via MQTT from the
QoS/QoE Monitor at
UMA testbed.

RabbitMQ must be up
and running on the
UMA testbed.

QoS/QoE Monitor must
be up and running on
the UMA testbed.

UC must be deployed,
up and running on the
UMA testbed.

Analytics payloads must
be received and printed
in the Aggregator’s log.

1) PASS

3

Basic positive test of
subscribing to the actual
endpoint topic ex-
change, for receiving
real analytics data pay-
loads via MQTT from the
QoS/QoE Monitor at a
different testbed.

RabbitMQ must be up
and running on the
UMA testbed.

QoS/QoE Monitor must
be up and running on
the host testbed to be
tested.

Network measurements
must be available at the
testbed.

Analytics payloads must
be received and printed
in the Aggregator’s log.

1) PASS

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 54

4 Conclusions

In this deliverable, we have deposited our reports on system integration (Section 2); and testing/validation and
verification activities (Section 3), as these were carried out in the context of Task 4.4 and T4.5. Partner activities
elaborated in these reporting documents were carried out to ensure that the final integrated platform reported
in D4.5 both implements, and meets the required functional specifications.

The integration report references the platform architectural elements identified last in D1.4 (not the network
applications - these will be reported in D4.2 revision), and particularly contextualizes the integration work with
respect to the APIs that have either been individually reported in a technical WP deliverable, or in D4.5 (which
has been updated, and is re-submitted in parallel to this report). For each component, we delivered a short
summary of its role within the 5G-EPICENTRE architecture, described which APIs from the other components it
makes requests to (along with connection type, API protocol and type of data exchanged), and to what purpose.
We further elaborated on the integration format, thereby establishing a roadmap of collaborative actions, that
partners in the project carried out to ensure that the system functionality has been delivered.

Cohesively, the testing and validation report references the information provided in Section 2, and outlines all
the tests that 5G-EPICENTRE partners have carried out, to ensure the integration was achieved, and that the
system functions as intended (for the evaluation stage with both first- and third-party experimenters, in WP5).
It elaborates on the test scenarios and flows carried out (providing the test tools used), the preconditions for
testing and the expected behaviour of the system for each flow. If deviations were encountered, these have
been duly reported, along with applied countermeasures.

The deliverable has thus reported on the final status of the system integration and testing activities throughout
the course of the integration Task lifetime since D4.6 (T4.4, M24-M37), as well as in the case of the system testing
and validation Task (T4.5). It follows up completion of the final version of the 5G-EPICENTRE experimentation
facility (D4.5), and concludes the activities in WP4. The focus of the partners will now shift towards the experi-
mentation (WP5) and outreach activities (WP6), which will be supported by minimal technical work whenever
necessary (in the context of those WPs).

D4.7 Integration, Verification and Testing Report final version

H2020-ICT-2020-2 Grant agreement ID: 101016521 Page | 55

References

[1] IEEE Standard for Software and System Test Documentation. (2008). IEEE Std 829-2008, 1-150.
https://doi.org/10.1109/IEEESTD.2008.4578383.

[2] Sayadi, B., Chang, C.-Y., Tranoris, C., Iordache, M., Katsaros, K., Vilalta, R., … & Makropoulos, George. (2022).
Network Applications: Opening up 5G and beyond networks. Zenodo. https://doi.org/10.5281/ze-
nodo.7123919.

[3] Fu, L., Salvendy, G., & Turley, L. (2002). Effectiveness of user testing and heuristic evaluation as a function of
performance classification. Behaviour & information technology, 21(2), 137-143.

[4] Maguire, M., & Isherwood, P. (2018, July). A comparison of user testing and heuristic evaluation methods for
identifying website usability problems. In International Conference of Design, User Experience, and Usabil-
ity (pp. 429-438). Springer, Cham.

[5] Nielsen, J. (1994). Usability Engineering. Morgan Kaufmann.
[6] Nielsen, J. (1994). Enhancing the Explanatory Power of Usability Heuristics. In Proceedings of the SIGCHI con-

ference on Human Factors in Computing Systems (pp. 152-158). 10.1145/191666.191729.
[7] Ntoa, S., Margetis, G., Antona, M., & Stephanidis, C. (2021). User experience evaluation in intelligent envi-

ronments: A comprehensive framework. Technologies, 9(2), 41.
[8] Fernandez, A., Insfran, E., & Abrahão, S. (2011). Usability evaluation methods for the web: A systematic map-

ping study. Information and software Technology, 53(8), 789-817.
[9] Vermeeren, A. P., Law, E. L. C., Roto, V., Obrist, M., Hoonhout, J., & Väänänen-Vainio-Mattila, K. (2010, Oc-

tober). User experience evaluation methods: current state and development needs. In Proceedings of the
6th Nordic conference on human-computer interaction: Extending boundaries (pp. 521-530)

https://doi.org/10.1109/IEEESTD.2008.4578383
https://doi.org/10.5281/zenodo.7123919
https://doi.org/10.5281/zenodo.7123919
https://dl.acm.org/doi/10.1145/191666.191729

